Critical Phenomena in Velocity-Induced Perfect Fluid Collapse

Scott Noble 1,2 Matt Choptuik 1

¹Dept. of Physics & Astronomy, University of British Columbia, Vancouver, B.C., Canada ²Center for Relativity, Dept. of Physics, University of Texas at Austin, Austin, TX, USA

Supported by CIAR, NSERC, CFI/BCKDF

Critical Phenomena in Velocity-Induced Perfect Fluid Collapse - p.1/11

Motivation

- J. Novak (2001):
 - "Ideal-gas" EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$, $\Gamma = 2$
 - Tuning star's init. vel. \rightarrow Type-II critical behavior;
 - $M_{BH} \propto |p-p^*|^\gamma$ with $\gamma \simeq 0.52$
- Neilsen and Choptuik (2000), Brady et al. (2002)
 - Studied ultra-relativistic fluid collapse;
 - A limit of "ideal-gas" case where $\rho \equiv (1+\epsilon)\,\rho_\circ \simeq \rho_\circ \epsilon$
 - $P = (\Gamma 1) \rho$, only EOS to admit CSS soln's;
 - For Γ = 2, $\gamma \simeq 0.95 \pm 0.02$
- Neilsen and Choptuik (2000)
 - For $\Gamma = 1.4$: Ideal-gas Type-II Sol'n. = Ultra-rel. Type-II Sol'n.

Motivation

- J. Novak (2001):
 - "Ideal-gas" EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$, $\Gamma = 2$
 - Tuning star's init. vel. \rightarrow Type-II critical behavior;
 - $M_{BH} \propto |p-p^*|^{\gamma}$ with

$$\gamma \simeq 0.52$$
 \checkmark

- Neilsen and Choptuik (2000), Brady et al. (2002)
 - Studied ultra-relativistic fluid collapse;
 - A limit of "ideal-gas" case where $\rho \equiv (1 + \epsilon) \rho_{\circ} \simeq \rho_{\circ} \epsilon$
 - $P = (\Gamma 1) \rho$, only EOS to admit CSS soln's;

• For $\Gamma=2$, $\gamma\simeq 0.95\pm 0.02$ -

- Neilsen and Choptuik (2000)
 - For $\Gamma = 1.4$: Ideal-gas Type-II Sol'n. = Ultra-rel. Type-II Sol'n.

• Solve TOV Eq.'s $(\dot{g}_{\mu\nu} = \dot{T}_{\mu\nu} = v = 0)$

- Neutron Star \approx Stiff ($\Gamma = 2$) TOV Sol'n;
- EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$

• Add in-going coordinate velocity: $U(\tilde{r} = r/R_*) = \frac{u^r}{u^t} = p \frac{\tilde{r}}{2} \left[\tilde{r}^2 - 3 \right]$

- Solve TOV Eq.'s $(\dot{g}_{\mu\nu} = \dot{T}_{\mu\nu} = v = 0)$
 - Neutron Star \approx Stiff ($\Gamma = 2$) TOV Sol'n;
 - EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$

• Add in-going coordinate velocity: $U(\tilde{r} = r/R_*) = \frac{u^r}{u^t} = p \frac{\tilde{r}}{2} \left[\tilde{r}^2 - 3 \right]$

• Match to U = 0

- Solve TOV Eq.'s $(\dot{g}_{\mu\nu} = \dot{T}_{\mu\nu} = v = 0)$
 - Neutron Star \approx Stiff ($\Gamma = 2$) TOV Sol'n;
 - EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$

• Add in-going coordinate velocity: $U(\tilde{r} = r/R_*) = \frac{u^r}{u^t} = p \frac{\tilde{r}}{2} \left[\tilde{r}^2 - 3 \right]$

• Match to U = 0

• Solve
$$(\alpha' = ...)$$
 and $(a' = ...)$
and find $v = aU/\alpha$

Critical Phenomena in Velocity-Induced Perfect Fluid Collapse - p.3/11

- Solve TOV Eq.'s $(\dot{g}_{\mu\nu} = \dot{T}_{\mu\nu} = v = 0)$
 - Neutron Star \approx Stiff ($\Gamma = 2$) TOV Sol'n;
 - EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$
- Add in-going coordinate velocity: $U(\tilde{r} = r/R_*) = \frac{u^r}{u^t} = p \frac{\tilde{r}}{2} \left[\tilde{r}^2 - 3 \right]$
- Match to U = 0
- Solve ($\alpha' = ...$) and (a' = ...) and find $v = aU/\alpha$
- Tune to threshold of black hole formation

Initial Data : TOV Solution

Initial Data : TOV + In-going Velocity

CSS Solutions of Ideal-gas and Ultra-rel.

 Comparison of dimensionless quantities:

•
$$\omega \equiv 4\pi r^2 a^2 \rho$$

•
$$a = \sqrt{g_{rr}}$$

•
$$v = \frac{au^r}{\alpha u^t} =$$
 Eulerian Velocity
($u^{\mu} =$ Fluid's 4-velocity)

- Star parameters at t = 0:
 - $\rho_{\circ} (r=0) = 0.05$

•
$$P = \rho_{\circ}^2$$
 , $\epsilon = P/\rho_{\circ}$

Scaling of T_{max} : Dependence on Fluid's Floor

• $T_{\max} \equiv \text{Global Max.}(T^a{}_a)$

γ	p^*		
0.94272	0.46875367383		
0.94358	0.46875350285		
0.9469707	0.4687516089		

Floor used to prevent

 $v \ge 1$, $P, \rho_{\circ} < 0$

No significant effect;

Scaling of T_{max} : Different "Families"

γ	p^*		
0.94272	0.46875367383		
0.94234392	0.42990315097		
0.918693	0.4482047429836		

- Suggests scaling is fairly independent of:
 - Functional form of perturbation;
 - Initial star configuration;

Test Type	$ ho_c$	Floor	Δr	U	γ	p^*
-	0.05	2.5×10^{-19}	4h	U_1	0.94272	0.46875367383
Floor	0.05	2.5×10^{-17}	4h	U_1	0.94358	0.46875350285
Floor	0.05	2.5×10^{-15}	4h	U_1	0.9469707	0.4687516089
Family	0.05	2.5×10^{-19}	4h	U_2	0.94234392	0.42990315097
Family	0.0531	2.5×10^{-19}	4h	U_1	0.918693	0.4482047429836

 \checkmark Our average : $\gamma~=~0.94\pm0.01$

 \blacksquare Brady et al. (2002) (averaged over diff. methods): $\gamma=0.95\pm0.02$

Conclusion

- (Ideal-gas Type-II Sol'n.) \simeq (Ultra-rel. Type-II Sol'n.) for $\Gamma = 2$
- $\gamma_{\rm ideal} \simeq \gamma_{\rm ultra-rel.}$
- Novak (2001) did not sufficiently tune toward p^*

- NSERC = National Sciences and Engineering Research Council of Canada
- CIAR = Canadian Institute for Advance Research
- CFI = Canada Foundation for Innovation
- BCKDF = British Columbia Knowledge Development Fund

Back to Title page