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Understanding BH Accretion
(at least for the innermost regions of radiative efficient, geometrically thin disks)

L=A Rin
2 T max

4 Rin=r iscoM ,a T~H /r 2 r−1

Shafee et al. (2006), McClintock et al. (2006)

=1− Ė / Ṁ
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Thin Disk Model:  Novikov & Thorne (1973)

Assumptions:

1) Equatorial Keplerian Flow

 Thin, cold disks

2) Time-independent flow and BH

3) Work done by stress is locally 
dissipated into heat and  
radiated instantly

4) Conservation of  M, E, L

5) Zero Stress at ISCO
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Issues and Concerns:
● Real disks...
✗Are dynamic

✗Have finite temperature/thickness

✗May be tilted 

● Zero Stress Condition:  

✗Thought to be suspect from very start 
(Thorne 1974, Page & Thorne 1974) 

✗Magnetic field stress may connect 
plunging material to the disk:    
(Gammie 1999, Agol & Krolik 2000)

✗Previous 3D non-conservative 
GRMHD simulations show increasing 
stress through ISCO (Krolik et al. 2005)

✔(Contemporaneous) 3D conservative 
GRMHD a=0 simulation shows 
diminishing stress within ISCO    
(Shafee et al. 2008)



  Krolik, Hawley, Hirose (2005)
H/R ~ 0.1 - 0.17

Dynamical Global GRMHD Disk Models

Shafee et al.  (2008)
H/R ~ 0.05



  

Our Work
●1st Self-consistent measurement of radiative efficiency from 3D GRMHD 

simulations

●1st 3D GRMHD Thin Disk simulation around a spinning black hole 
(see contemporaneous work by Shafee et al. 2008 for 3D GRMHD thin disk sim. w/ non-spinning BH)
(see Fragile & Meier 2008 for 2.5D GRMHD thin disk simulations with realistic cooling)
(see Reynolds & Fabian 2008 for 3D pseudo-Newt. MHD thin disk simulation)

●Uses new 3D Conservative GRMHD code (HARM3D)
●3D version of HARM (Gammie et al. 2003) with improvements

●GR Ray Tracer transfers local emission to distant observer's frame
●Handles time-dependent 3D simulation data
●Local Emissivity = Local Cooling Rate
●Doppler shifts
●Gravitational redshift
●Relativistic beaming
●Improved from earlier work (Noble et al. 2007)



  

Technical Details
GRMHD Simulation

• a = 0.9 M

• 192x192x64 cells

•

•

•

• Dissipation → Heat

• Optically thin cooling to  

 H/R  ~ 0.05 - 0.12

• Steady-state over

• Isotropic, thin emission of dissipation

r∈[r hor ,120M]

∈[0,
2
]

∈[0.05, 0.95]

r∈[rhor ,12M]
t avg∈[7000M ,15000M ]

j=
f c

4
t diff≪ t dyn~t orb



  

Departure from Keplerian Motion

HARM3D

dVH



  

Magnetic Stress

dVH

HARM3D

NT



  

Observer Frame Luminosity: Angle+Time Average

NT

HARM3D
Assume NT profile 
for  r >  12M .

/=6%

NT=0.143
H3D=0.151

If disk emitted retained heat: /~20 %

T max /T max=30%

 Rin/Rin~80%



  

Summary & Conclusions

• We now have the tools to self-consistently measure dL/dr from GRMHD disks:
• 3D Conservative GRMHD simulations
• GR Radiative Transfer

• Similarity to previous simulation with different algorithm implies robustness of   
our results. 

• Luminosity from within ISCO diminished by 
• Photon capture by the black hole
• Gravitational redshift

• tcool  >  tinflow

  Possibly greater difference for   aBH < 0.9   when ISCO is further out   
of the potential well.   

Future Work: 
• Explore parameter space:  More spins,  More  H/R ‘s ,  More  H(R) ‘s 

→  dL/dr ( a ,  H/R )
• Time variability analysis, Impossible with steady-state models



  

Extra Slides



  

Fluid Frame Flux

=0.01
Agol & Krolik (2000) 
model

/=7%



  

Accretion Rate

1000

Steady State Period = 7000 – 15000M

Steady State Region = Horizon – 12M



  

Target Temperature

• Reaching to within 5% of  
Target Temperature

• Cooling Rate >~ Diss. Rate



  

Disk Thickness

dVH

HARM3D



  

max
−1 r 

Uncooled Cooled dVH

HARM3D vs. dVH

file:///D:/talks/newfigs/rhomax_uncooled_r=25.mpg
file:///D:/talks/newfigs/rhomax_cooled_r=25.mpg


  

log 

Uncooled Cooled dVH

HARM3D vs. dVH



  

Variability of Dissipated Flux

=5deg.
=35deg.
=65deg.
=89deg.



  

HARM3D vs. dVH −avg 

Uncooled Cooled #2 dVH



  

HARM3D vs. dVH log 

192x192x64
a = 0.9 M



  

HARM3D vs. dVH log P

192x192x64
a = 0.9 M



  

HARM3D vs. dVH log Pmag 

192x192x64
a = 0.9 M



  

Cooled #1 vs. Cooled #2 log P

From t = 0 MFrom t = 4000 M



  

log Pmag 

Uncooled Cooled #2 dVH

HARM3D vs. dVH



  

log 

Uncooled Cooled #2

HARM3D vs. dVH



  

log P

Uncooled Cooled #2 dVH

HARM3D vs. dVH



  

Ṁ

Cooled from t=0M

Cooled from t=4000M

Uncooled

Non-conservative

HARM3D vs. dVH



  

Cooling Methods log 

From t = 0 MFrom t = 4000 M



  

log Pmag 

From t = 0 MFrom t = 4000 M

Cooling Methods



  

Cooling Efficacy

Cooled from t=0M

Cooled from t=4000M

Uncooled

dVH

Cooled from t=0M

Cooled from t=4000M

Uncooled



  

Spectral Fits for BH Spin

Shafee et al. (2006)

McClintock et al. (2006)



  

log Pmag 

Uncooled Cooled dVH

HARM3D vs. dVH



  

Observer-Frame Intensity: Inclination  

i=5o

i=65o

i=89o



  

Observer-Frame Intensity:  Time Average

NT

HARM

i=5o i=65o i=89o



  

Cooling Function

T 
 ;=−F

F = f cu

f c=su −1∣−1∣q

= u
T T r = H

R
r

2

 Optically-thin radiation:

 Cool only when fluid's 
temperature too high:

 Isotropic emission:

=0 for 0
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