Direct Calculation of the Radiative Efficiency of Thin Accretion Disks

Scott C. Noble (JHU) Julian H. Krolik (JHU), John F. Hawley (UVa) 213th AAS Meeting, Long Beach, CA January 6th, 2009 accepted ApJ, arXiv:0808.3140

Understanding BH Accretion

(at least for the innermost regions of radiative efficient, geometrically thin disks)

Done, etal. (2007)

Thin Disk Model: Novikov & Thorne (1973)

Assumptions:

1)

- Equatorial Keplerian Flow
 - Thin, cold disks
- 2) Time-independent flow and BH
- Work done by stress is locally dissipated into heat and radiated instantly
- 4) Conservation of M, E, L
- 5) Zero Stress at ISCO

Issues and Concerns:

- Real disks...
 - X Are dynamic
 - Have finite temperature/thickness
 - May be tilted
- Zero Stress Condition:
 - Thought to be suspect from very start (Thorne 1974, Page & Thorne 1974)
 - Magnetic field stress may connect plunging material to the disk: (Gammie 1999, Agol & Krolik 2000)
 - Previous 3D non-conservative GRMHD simulations show increasing stress through ISCO (*Krolik et al. 2005*)
 - (Contemporaneous) 3D conservative GRMHD a=0 simulation shows diminishing stress within ISCO (Shafee et al. 2008)

Dynamical Global GRMHD Disk Models

Our Work

- 1st Self-consistent measurement of radiative efficiency from 3D GRMHD simulations
- 1st 3D GRMHD Thin Disk simulation around a *spinning* black hole (see contemporaneous work by *Shafee et al. 2008* for 3D GRMHD thin disk sim. w/ non-spinning BH) (see *Fragile & Meier 2008* for 2.5D GRMHD thin disk simulations with realistic cooling) (see *Reynolds & Fabian 2008* for 3D pseudo-Newt. MHD thin disk simulation)
- Uses new 3D Conservative GRMHD code (HARM3D)
 3D version of HARM (Gammie et al. 2003) with improvements
- GR Ray Tracer transfers local emission to distant observer's frame
 - Handles time-dependent 3D simulation data
 - Local Emissivity = Local Cooling Rate
 - Doppler shifts
 - Gravitational redshift
 - Relativistic beaming
 - Improved from earlier work (Noble et al. 2007)

Technical Details

GRMHD Simulation

- a = 0.9 M
- 192x192x64 cells
- $r \in [r_{hor}, 120M]$
- $\phi \in [0, \frac{\pi}{2}]$
- $\theta \in \pi[0.05, 0.95]$
- Dissipation → Heat
 Optically thin cooling to H/R ~ 0.05 - 0.12
- Steady-state over $r \in [r_{hor}, 12M]$ $t_{avg} \in [7000M, 15000M]$ • Isotropic, thin emission of dissipation $t_{diff} \ll t_{dyn} \sim t_{orb}$ $j_{v} = \frac{f_{c}}{4\pi}$

Departure from Keplerian Motion

Magnetic Stress

Observer Frame Luminosity: Angle+Time Average

If disk emitted retained heat: $\Delta \eta / \eta \sim 20$ %

Assume NT profile for r > 12M.

 $\eta_{H3D} = 0.151$ $\eta_{NT} = 0.143$ $\Delta \eta / \eta = 6\%$ $\Delta R_{in}/R_{in} \sim 80\%$ $\Delta T_{max}/T_{max}=30\%$

Summary & Conclusions

We now have the tools to self-consistently measure dL/dr from GRMHD disks:

- 3D Conservative GRMHD simulations
- GR Radiative Transfer

 Similarity to previous simulation with different algorithm implies robustness of our results.

Luminosity from within ISCO diminished by

- Photon capture by the black hole
- Gravitational redshift
- $t_{cool} > t_{inflow}$

Possibly greater difference for a_{BH} < 0.9 when ISCO is further out of the potential well.

Future Work:

Explore parameter space: More spins, More H/R 's, More H(R) 's
 → dL/dr (a, H/R)
 Time variability analysis, Impossible with steady-state models

Fluid Frame Flux

Agol & Krolik (2000) model $\Delta \eta = 0.01$ $\Delta \eta / \eta = 7\%$ 0.020

Accretion Rate

Target Temperature

Disk Thickness

HARM3D vs. dVH $\rho \rho_{max}^{-1}(r)$

Uncooled

Cooled

dVH

HARM3D vs. $dVH \log(\rho)$

Uncooled

Variability of Dissipated Flux

 $\theta = 5 deg.$ $\theta = 35 deg.$ $\theta = 65 deg.$ $\theta = 89 deg.$

HARM3D vs. dVH $\gamma(\phi - avg)$

Uncooled

HARM3D vs. dVH $\log(\rho)$

HARM3D vs. dVH $\log(P)$

HARM3D vs. dVH $\log(P_{mag})$

Cooled #1 vs. Cooled #2 $\log(P)$

HARM3D vs. dVH $\log(P_{mag})$

-3

-4

-5

-6

-7

Uncooled

HARM3D vs. dVH log(B)

t/M = 14000

t/M = 14000

Uncooled

HARM3D vs. $dVH \log(P)$

Uncooled

HARM3D vs. dVH

Cooling Methods

Cooling Methods

30

20

10

0

-10

-20

-30

 \mathbf{O}

5

rom

 $\log(P_{mag})$

Cooling Efficacy

Cooled from t=0M Cooled from t=4000M Uncooled

Spectral Fits for BH Spin

TABLE 1 Black Hole Spin Estimates Using the Mean Observed Values of M , D , and i						
Candidate	Observation Date	Satellite	Detector	a _* (D05)	a _* (ST95)	
GRO J1655-40	1995 Aug 15 1997 Feb 25–28	ASCA ASCA	GIS2 GIS3 GIS2	~ 0.85 ~ 0.80 $\sim 0.75^{a}$	~0.8 ~0.75 ~0.70	
4U 1543-47	1997 Feb 26 1997 (several) 2002 (several)	RXTE RXTE RXTE	GIS3 PCA PCA PCA	$\sim 0.75^{a}$ $\sim 0.75^{a}$ $0.65-0.75^{a}$ $0.75-0.85^{a}$	~ 0.7 ~ 0.65 0.55-0.65 0.55-0.65	

^a Values adopted in this Letter.

Shafee et al. (2006)

	Power Law		
Object	Mean	Standard Deviation	
GRS 1915+105 ^a GRS 1915+105 ^b	0.998 0.998	0.001 0.001	

McClintock et al. (2006)

HARM3D vs. dVH $\log(P_{mag})$

Uncooled

Cooled

Observer-Frame Intensity: Inclination

Observer-Frame Intensity: Time Average

 $i=5^{\circ}$

i=65°

Cooling Function

Optically-thin radiation:

Isotropic emission:

 $\Delta = \frac{u}{\rho T}$

 $T^{\mu}_{\nu:\mu} = -F_{\nu}$

 $F_{v} = f_{c} u_{v}$

 $T(r) = \left(\frac{H}{R}r\Omega\right)^2$

 Cool only when fluid's temperature too high:

 $f_c = s \Omega u (\Delta - 1 + |\Delta - 1|)^q = 0 \text{ for } \Delta < 0$