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Abstract
The radio source Sagittarius A∗ (Sgr A∗) is believed to be a hot,
inhomogeneous, magnetized plasma flowing near the event horizon of the
3.6 × 106 M� black hole at the galactic centre. At a distance of 8 kpc
(� 2.5 × 1022 cm) the black hole would be among the largest black holes as
judged by angular size. Recent observations are consistent with the idea that the
millimetre and sub-millimetre photons are dominated by optically thin, thermal
synchrotron emission. Anticipating future Very Long Baseline Interferometry
(VLBI) observations of Sgr A∗ at these wavelengths, we present here the first
dynamically self-consistent models of millimetre and sub-millimetre emission
from Sgr A∗ based on general relativistic numerical simulations of the accretion
flow. Angle-dependent spectra are calculated assuming a thermal distribution
of electrons at the baryonic temperature dictated by the simulation and the
accretion rate, which acts as a free parameter in our model. The effects of
varying model parameters (black hole spin and inclination of the spin to the
line of sight) and source variability on the spectrum are shown. We find that
the accretion rate value needed to match our calculated millimetre flux to the
observed flux is consistent with constraints on the accretion rate inferred from
detections of the rotation measure. We also describe the relativistic jet that is
launched along the black hole spin axis by the accretion disc and evolves to
scales of ∼103GMc−2, where M is the mass of the black hole.

PACS numbers: 95.30.Jx, 95.30.Qd, 98.35.Jk, 95.85.Fm, 98.62.Mw, 98.38.Fs,
98.58.Fd, 97.60.Lf, 95.30.Sf, 02.60.Cb
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1. Introduction

One of the most attractive areas of astrophysics lies at the intersection of astronomy and
gravitational physics, in the rapidly growing observational and theoretical study of black
holes in their natural setting. Candidate black holes are found in binary systems, with mass
M ∼ 10 M�, and in the nuclei of galaxies, with M ∼ 106–1010 M�. Intermediate-mass
candidates exist but are much less secure. Observational facilities that operate across the
electromagnetic spectrum are gathering a wealth of new data about black hole candidates,
primarily by observing radiation from a hot, luminous plasma deep in the object’s gravitational
potential [1, 2]. In some cases, this plasma is streaming outward and will be observed as a
collimated jet at large radius; in other cases, the plasma is believed to be moving inward,
forming an accretion disc5. Both the origin of the jet and the structure of the disc are poorly
understood, and new developments in the theory of both are the subject of this paper.

The massive dark object in the centre of our galaxy, which coincides with the radio
source Sgr A∗ , is one of the most interesting black hole candidates; from here on we will
dispense with the word candidate for Sgr A∗ as the evidence for a black hole there is
so strong as to make alternative models highly contrived, see, e.g., [3]. At a distance of
R � 8 kpc [4–6], this M � 4 × 106 M� black hole has a larger angular size than all candidate
black holes, and therefore offers the best opportunity for directly imaging the silhouette (or
‘shadow’ [7]) of an event horizon. However, its remarkably small bolometric luminosity of
L ≈ 103L� ≈ 10−8Ledd—where Ledd is the Eddington luminosity—provides a challenge for
theoretical models. If one assumes that the accretion rate Ṁx-rays � 4 × 10−5 M� yr−1 at
r ≈ 0.1pc ≈ 5.6 × 105GMc−2, based on a Bondi model and x-ray observations [8, 9], holds
for all r and that accretion flow is a thin disc near the black hole, then the observed luminosity
is approximately

L ≈ 10−5

(
0.1

η

)
Lthin = 10−5

(
0.1

η

)
c2Ṁx-rays, (1)

(η is the radiative efficiency) so either Ṁ varies with r, the thin disc model is irrelevant,
or both. The spectral energy distribution (SED) shows no sign of the multitemperature
black body distribution expected from a thin disc (e.g. [10]). Recent millimetre and sub-
millimetre polarimetry observations, folded through a model of the accretion flow, require
Ṁ � 10−7–10−9 M� yr−1 [11, 12] near the hole. All this suggests that Ṁ drastically
diminishes as r → 0.

Current popular theories of Sgr A∗ fall into two categories: jet models and radiatively
inefficient accretion flow (RIAF) models. The former suppose that the most luminous part
of Sgr A∗ is a pair of relativistic jets of plasma propagating perpendicular to the accretion
flow that emit via synchrotron and/or synchrotron self-Compton processes [13, 14]. The
RIAF theories suggest that the disc is quasi-spherical but rotating, and emits via synchrotron,
bremsstrahlung and Compton processes [15]. In order to account for the low luminosity, the
RIAF disc is taken to be an inefficient emitter that retains much of its heat and maintains a
geometrically thick profile. Each of these models is freely specified by a number of unknown
parameters such as the radius of the jet’s sonic point or the fraction of heat shared between
electrons and protons in the RIAF disc. With this considerable freedom, each model can
predict the spectrum quite well.

These two theories neglect GR effects and do not account for dynamical variations
of the spectrum self-consistently. General relativistic calculations of the emission have been

5 We use the term disc to mean any accretion flow with angular momentum. In some cases, a ring-like structure is
directly observed (NGC 4258).
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performed, though they have used RIAF solutions [16] or simple orbiting spheres of hot plasma
[17, 18] as sources. They also use an isotropic (angle-averaged) synchrotron emissivity. A
radiative transfer calculation based on Newtonian magnetohydrodynamic (MHD) simulation
data has been performed using the Paczynski–Witta potential to approximate the black hole’s
effect [19], but this cannot fully account for light bending, gravitational redshift and Doppler
effects, particularly if the black hole is rapidly rotating.

Here, we will present the first self-consistent optically thin calculations of Sgr A∗’s image
and spectrum at about λ = 1 mm, near the peak of its SED. This band of radiation is particularly
interesting since it originates near the horizon and will, consequently, be strongly affected by
the hole’s curvature. Improvements in millimetre and sub-millimetre Very Long Baseline
Interferometry (VLBI) will soon permit features at the scale of the horizon to be resolved [20];
this makes the construction of accurate, detailed models that incorporate relativistic effects
even more pressing.

Another active subject relevant to accretion discs is the study of relativistic jets. Whether
the black holes are of a few solar masses [21, 22] or are extragalactic and supermassive
[23, 24], jets are observed emanating from them. Following the recent surge of interest
in general relativistic magnetohydrodynamic (GRMHD) simulations, several groups have
begun to investigate the outflows that appear spontaneously in weakly radiative accretion disc
simulations [25–27]. We contribute to this body of work by presenting recent evolutions of
jets launched from geometrically thick discs. We describe the large-r scaling of the jet and
explain its dependence on numerical parameters.

The outline of the paper is the following. We describe the theory and methodology used
for our GRMHD disc simulations in section 2.1. These simulations serve as the dynamic
radiative source for our radiative transfer calculations, which are described in section 2.2.
Images and spectra of Sgr A∗ for a variety of situations are presented in section 3. Section 4
describes our work on jets and section 5 gives a summary.

2. Theoretical foundation

In many accreting black hole systems, the inner part of the material flow is well explained
by the ideal MHD approximation. We employ this assumption in our dynamical evolutions
of black hole accretion discs as described in section 2.1. Emission from these simulations is
calculated via a ray-tracing technique described in section 2.2.

2.1. General relativistic magnetohydrodynamics

We present in this section an outline of the equations and methodology used to calculate
accretion disc evolutions. More thorough descriptions can be found in [28, 29], yet we repeat
a few points here to provide a context for the rest of the paper.

Throughout this paper we follow standard notation [30]. We work in a coordinate
basis with metric components gµν and independent variables t, x1, x2, x3. The quantity
nµ = (−α, 0, 0, 0) is the dual of the 4-velocity of a ‘normal observer’ that moves orthogonal to
constant t foliations of spacetime, where α2 = −1/gtt is the square of the lapse. Greek indices
refer to all spacetime components, while Roman indices represent only spatial components.
Geometrized units are used so G = c = 1 unless otherwise noted.

The GRMHD equations of motion include the continuity equation

∇µ(ρ◦uµ) = 0, (2)
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the equations of local energy conservation

∇µT µ
ν = 0, (3)

and Maxwell’s equations

∇ν
∗Fµν = 0. (4)

Here, ρ◦ is the rest-mass density, uµ is the fluid’s 4-velocity, T µ
ν is the MHD stress–energy

tensor and the Maxwell tensor ∗Fµν is the dual of the electromagnetic field tensor Fµν . The
ideal MHD approximation,

uµFµν = 0, (5)

eliminates three of the six degrees of freedom inherent in the electromagnetic field. The
remaining degrees of freedom can be represented by the three non-trivial components of the
magnetic field in the frame of the normal observer:

Bµ ≡ −nν
∗Fµν

. (6)

A convenient tensor related to Bµ is one proportional to the projection of the field into a space
normal to the fluid’s frame:

bµ ≡ 1

γ

(
δµ

ν + uµuν

)
Bν . (7)

Using these definitions, one can easily show that the MHD stress–energy tensor can be
expressed as

T µν = (ρ◦ + u + p + b2)uµuν +

(
p +

b2

2

)
gµν − bµbν, (8)

where p is the fluid’s pressure, u is the fluid’s internal energy density and b2 ≡ bµbµ. Further,
one can show that the GRMHD equations of motion can take the following flux conservative
form:

∂tU(P) = −∂iFi(P) + S(P), (9)

where U is a vector of ‘conserved’ variables, Fi are the fluxes and S is a vector of source terms.
Explicitly, these are

U = √−g
[
ρ◦ut , T t

t + ρ◦ut , T t
j ,Bk/α

]T
(10)

Fi = √−g
[
ρ◦ui, T i

t + ρ◦ui, T i
j ,

(
biuk − bkui

) ]T
(11)

S = √−g
[
0, T κ

λ

λ
tκ , T

κ
λ


λ
jκ , 0

]T
, (12)

where 
λ
µκ is the metric’s associated affine connection coefficients. Note that Maxwell’s

equations are rewritten as the last three components of (9)—also known as the induction
equations—and a constraint equation

∂i(
√−gBi/α) = 0, (13)

which must be upheld during the evolution. Since the equations are solved in flux conservative
form, energy is conserved to machine precision. This means that small-scale structures in the
velocity and magnetic field are erased by numerical smoothing, but that the associated kinetic
and electromagnetic energy is captured as entropy.

We use the HARM code [28] to evolve axisymmetric discs on a fixed background. Because
of axisymmetry our numerical models will fail to capture some aspects of the disc dynamics.
For example, axisymmetric MHD flows cannot sustain turbulence due to the anti-dynamo
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theorem and fail to properly capture the dynamics of magnetic Rayleigh–Taylor instabilities.
3D models will eventually be required to include these effects.

A central, Lax–Friedrich-like flux method similar to that proposed by Kurganov and
Tadmor [31] is used. The flux-CT method [32] is used to impose the ‘no-monopoles’
constraint, and the monotonized central limiter scheme is used to reconstruct at each cell
interface. In order to calculate Fi , we need to invert the conserved variable definitions for the
primitive variables. This is performed using the ‘2D’ method of [29]. In all of the results
shown here, the equation of state

p = (
 − 1)u (14)

is used with 
 = 4/3. Also, we use a grid that is uniformly spaced in a slightly modified
version of the usual spherical Kerr–Schild coordinates t, r, θ, φ, which are regular on the
horizon. The modifications concentrate numerical resolution towards the event horizon and
towards the midplane of the disc.

Our initial data consist of a torus in hydrodynamic equilibrium [33].6 On top of
this Fishbone–Moncrief torus we add a weak magnetic field with vector potential Aφ =
Max (ρ◦/ρmax − 0.2, 0) where ρmax is the maximum of the disc’s rest-mass density. The
magnetic field amplitude is normalized so that the ratio of gas to magnetic pressure within
the disc has a minimum of 100. With the addition of the field the disc is no longer strictly
in equilibrium, but because the field is weak it is only weakly perturbed. The initial state is
unstable to the MRI [34], so turbulence develops in the disc and material accretes onto the black
hole. Since HARM is incapable of evolving a vacuum, we surround the disc with an artificial
atmosphere, or ‘floor’ state, with ρ◦,atm = 10−4(r/M)−3/2 and uatm = 10−6(r/M)−5/2.
Whenever ρ◦ and u fall below the floor they are artificially set to the floor.

2.2. General relativistic radiative transfer

We consider non-polarized, optically thin emission from a thermal distribution of electrons at
wavelengths near the sub-millimetre peak in Sgr A∗’s spectrum. At these wavelengths, the disc
is expected to be optically thin and thermal synchrotron emission is expected to dominate. We
include both synchrotron and bremsstrahlung, confirming that the former dominates. Even
though much of the disc is calculated to be optically thin for frequencies of interest here, there
are small regions where absorption is important. For this reason, our calculations include
absorption and the radiative transfer equation is solved.

Numerical methods for calculating emission in curved spacetimes have become more
refined and sophisticated since their introduction decades ago. One of the first calculations
including light bending, lensing, gravitational redshifts and Doppler redshifts in general
relativity was done by [35] through the use of the so-called transfer function, which maps
the specific intensity of a luminous source to what would be observed at infinity7. Polarization
transfer functions were implemented in a Monte Carlo algorithm by [37], who modelled
polarized x-ray emission from geometrically thick clouds around Kerr black holes. This
method was later developed by [38] to study the effects of self-illumination on the emission
from accretion discs [39]. An algebraic expression for the polarization transfer function in
the Schwarzschild spacetime was derived by [40] to study the polarization of line emission
from thin discs. Time-dependent emission from accretion disc hot spots was calculated using
a code by [41] that ‘compressed’ and stored geodesic curves as Chebyshev polynomials

6 The Fishbone–Moncrief solution has a single key parameter uφut , which is by assumption constant. In units where
GM = c = 1, our solution is such that uφut = 4.28.
7 An implementation of the algorithm described in [35] was written and made publicly available by [36].
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so that many transfer calculations could be done without repeating the laborious geodesic
integrations. An efficient and somewhat complicated semi-analytical way of integrating the
geodesic equations in Kerr spacetimes was developed by [42]. The variability from indirect
photons (i.e. those that follow highly curved geodesics) on Sgr A∗ IR emission was estimated
by [43]. Modern techniques for efficiently calculating optically thin line emission from general
sources and spacetimes have been developed by a number of groups (e.g. [44–46]). The theory
of polarized radiation propagation and transfer through a magnetized plasma was derived and
implemented in [47, 48]. This work and another [49] solve the radiative transfer equations
with absorption in covariant form. More recently, a radiative transfer code that uses data
from GRMHD disc simulations has been used to investigate the presence of quasi-periodic
oscillations in calculated thermal radiation [50].

In our work, radiation is modelled as discrete bundles of photons that follow null geodesics
from the disc to a ‘camera’ 8 kpc from Sgr A∗. The geodesic equation is solved in first-order
form:

∂xµ

∂λ
= Nµ,

∂Nµ

∂λ
= 
ν

µηNνN
η, (15)

where 
ν
µη are the connection coefficients and Na = (

∂
∂λ

)a
is the tangent vector along the

geodesic that is parametrized by the affine parameter λ. As usual [18, 44, 45, 51], the geodesics
are calculated in reverse from a camera pixel back through the simulation volume. We assume
that the camera is a static observer in our coordinates and is centred on the black hole. From
the far ends of the geodesic, the radiative transfer equations are integrated forward to obtain
the final specific intensity values. The initial intensities are set to zero since the bundles either
start at the event horizon or originate from past null infinity.

The equations of general relativistic radiative transfer naturally develop from a
generalization of Liouville’s theorem to non-inertial frames [52] (see also [30, 53]), which
states that the number of photons, dN , per phase space volume, dV , is invariant along the
photon trajectory in vacuum:

d

dλ

dN
dV

≡ df

dλ
= 0; (16)

here λ is the affine parameter of the geodesic that the bundle follows and f is the photon
distribution function. It is more common to describe the radiation field by the specific
intensity Iν ∝ ν3f at frequency ν or with the invariant intensity I = Iν/ν

3.
When ionized matter is present, photons can be scattered in and out of the bundle,

converted to material degrees of freedom (absorbed) or can be added to the bundle via
spontaneous or induced emission. In the optically thin limit, scattering events are rare and
can be ignored. Since the rate of absorption is proportional to the bundle’s intensity and the
rate of emission is not, the frame-independent radiative transfer equation takes the simple
source/sink form

dI
dλ

= J − AI, (17)

where J and A are the Lorentz invariant emissivity and absorption coefficient, respectively,
which are related to their frame-dependent counterparts jν and αν by

J = jν

ν2
, A = ναν. (18)

The dimensions of λ can be deduced by reducing equation (17) to the usual inertial-frame
version:

dIν

ds
= jν − ανIν, (19)
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where ds = c dtν is the path length the photon traverses over time interval dtν as measured in
a frame in which the photon’s frequency is ν. For these to be equivalent we must define λ so
that the tangent vector appearing in the geodesic equation is

Nµ = c

2π
kµ, (20)

and kµ is the photon wavevector.
In practice, using λ as an integration variable leads to loss of precision near the horizon.

We instead use dλ′ = dλ/n(r) where

n(r) = r

rh

− 1, (21)

and rh is the radius of the event horizon.
A single time slice of the disc evolution is used to calculate jν and αν . This crude

approximation will be accurate where the matter distribution varies slowly compared to a
light-crossing time, as it is in the bulk of the disc. It will also be accurate for observations
over timescales longer than the light-crossing time; this applies to VLBI observations of
Sgr A∗. The primitive variables, {ρ, u, ũi ,Bi}, from the time slice are bilinearly interpolated
at each point along the geodesic and stored; ũi ≡ (

δi
µ + ninµ

)
uµ is the spacelike velocity

perpendicular to nµ. The step size is a tuneable fraction of the local grid spacing so that the
simulation data are well sampled.

The interpolated data are then used to integrate equation (17) using one or several emission
models. The Lorentz invariant emissivity J is calculated from the local observer’s value of
jν . We assume a thermal distribution function for the electrons so that αν = jν/Bν where Bν

is Planck’s distribution. We use an anisotropic, angle-dependent approximation to jν taken
from [54]. We have confirmed that this expression yields results to an accuracy no worse than
any of our other assumptions or approximations [55].

3. Sgr A∗ emission

Observations indicate that most of Sgr A∗’s radiation originates as optically thin emission
near the event horizon at a wavelength of �1 mm (e.g. [12]). Even if the accreting plasma
has very little angular momentum, it is expected to have circularized in this region. If the
magnetic field is weak at large radii, it is expected to be amplified to near equipartition with the
disc’s internal energy via the magnetorotational instability (MRI) [34]. This makes previous
accretion disc simulations [56] suitable for our study since they yield statistically steady flows
within r � 12 M .

The electrons are assumed to follow a thermal distribution which is consistent with
modern models that find a power-law distribution of electrons is needed to simultaneously
match radio and x-ray observations, but that thermal electrons are the dominant emitters at
sub-millimetre/millimetre wavelengths [15, 57]. Further, we assume that the electrons and
ions are at the same temperature, although some successful models of Sgr A∗ ’s spectrum
and variability assume a two-temperature flow [15, 19]. Cooling times for synchrotron and
bremsstrahlung emission are long compared with the inflow time in our model, as expected
for the matter near Sgr A∗ . Numerically integrated optical depths indicate that the disc is
everywhere optically thin (i.e. optical depth is less than unity) when λ � 1 mm. We can
therefore neglect the radiation’s effect on the GRMHD simulations for these wavelengths.

The degrees of freedom of our model include the spin of the black hole (a∗), the accretion
rate (Ṁscale), the inclination (angle iinc between the black hole angular momentum vector and
the line of sight to the black hole) and the time at which we make the image (tpic). The spin
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Table 1. Parameters for the accretion disc evolutions used to model Sgr A∗ emission. All quantities
are given in geometrized units unless explicitly stated otherwise. The radii r1, r2 and rISCO
are, respectively, the radius of the inner edge of the equilibrium torus at t = 0, radius of the
pressure maximum at t = 0 and the radius of the ISCO for the given spacetime. Ṁ4Jy is the
accretion rate resulting in a flux density of 4 J y at Earth; this is used to set the scale of the rest-mass
density. The quantities 〈Ṁ〉, 〈Ė〉, 〈L̇〉 are, respectively, the average accretion rates of the rest-mass,
energy and angular momentum, taken over 1100M < t < 1500M .

a∗(M) r1(M) r2(M) rISCO(M) Ṁ4Jy (10−9 M� yr−1) 〈Ṁ〉 〈Ė〉/〈Ṁ〉 〈L̇〉/〈Ṁ〉
0.0 6.4 15.05 6.00 7.34 0.88 0.95 3.01
0.5 6.0 13.02 4.23 3.60 0.75 0.94 2.58
0.75 6.0 12.35 3.16 2.05 0.41 0.90 2.15
0.88 6.0 12.10 2.48 1.15 0.30 0.89 1.96
0.94 6.0 12.00 2.04 0.82 0.23 0.86 1.62
0.97 6.0 12.00 1.75 1.23 0.33 0.86 1.65

and inclination are unknown for Sgr A∗, though a recent periodicity in x-ray flux that has been
seen may be evidence of a∗ � 0.22 [58]. Disc simulations with different a∗ and initial disc
distributions are used and are tabulated in table 1. Each simulation used 256 × 256 cells with
the algorithm described in section 2.1. This resolution proves to be sufficient for our purposes
since higher resolution simulation data (using 512 × 512 and 1024 × 1024 cells) produced
differences easily accounted for by time variability. We set r1 and r2—the radii of the inner
torus edge and the pressure maximum—so that all tori have similar shapes and sizes initially.
The density is scaled until the flux density at 1 mm matches an observationally determined 4 J y
[59]; this yields an accretion rate we will call Ṁ4Jy . Finally, we find insignificant dependence
on the simulation’s floor model in our emission calculations since its flux is always many
orders of magnitude smaller than that of the rest of the flow.

It is interesting to note that Ṁ4Jy are always consistent with the observational limits
Ṁ � 10−7–10−9 M� yr−1 [11, 12] obtained by folding measurements of the rotation measure
through a model for Faraday rotation within the accretion source. Because they use a RIAF-
like model the agreement with the simulations may in part be coincidental; it would be
very interesting to see self-consistent calculations of the rotation measure from the numerical
simulations.

An outstanding concern for future millimetre/sub-mm VLBI experiments is whether there
will be any observable effect from the black hole’s curvature. For this purpose, we present
images of a single snapshot (tpic = 1250M) of a simulation (a∗ = 0.94) at λ = 1 mm for
different inclination angles in figure 1. The raw images, in which each pixel represents a
unique ray, are shown next to their convolved counterparts. The convolution is performed
using a circular Gaussian beam to simulate the appearance of an image taken with VLBI using
a baseline 8000 km at λ = 1 mm [20, 7]. As expected, we find that the brightest regions of the
disc lie in the inner equatorial region of the flow where u and b2 are largest. The part of the
disc approaching the camera is brightest because of relativistic beaming. The brightest region
is especially interesting since most, if not all, of the geodesics that pass through it originate
near the horizon and orbit the black hole multiple times before reaching the camera. Note that
the asymmetry seen in the iinc = 5◦ images is expected since the disc is slightly inclined to
the viewer. Even though it is much more noticeable in the convolved image, the asymmetry is
also present in the high resolution image.

The black hole silhouette is obvious in the raw images at all inclinations, though may only
be observable in practice if iinc � 30◦. This does not necessarily mean that other observables—
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Figure 1. Images of the accretion disc viewed at a wavelength of 1 mm seen at inclination angles
of 5◦ (top), 30◦ (middle) and 90◦ (bottom). Each frame shows a view 40M wide in the plane of
the singularity. Frames in the left column are ‘infinite’ resolution images, while those in the right
column have been convolved with a symmetric Gaussian beam to simulate a 8000 km baseline
VLBI observation. The linear colour map used is shown at the right of the images. Each image
has been scaled by its maximum intensity for illustrative purposes.

such as variability and polarization fraction—are not sensitive to relativistic effects at other
inclinations.

We have also calculated spectra for a survey over tpic, a∗ and iinc, as shown in
figures 2–4. A standard model was used for comparison: tpic = 1250M,a∗ = 0.94, iinc = 30◦.
The filled circles with error bars in these plots represent observed flux values of Sgr A∗ during
quiescence [11, 59–63]. The red crosses are found from flux measurements during flare events
[63], and the arrows indicate upper limits at NIR/IR wavelengths [60]. Error bars indicate the
measured errors quoted in the references. We calculate Lν assuming isotropic emission.

Our calculations are most relevant in the vicinity of ν � 3×1011 Hz. At lower frequencies
the emission likely arises from plasma outside the computational domain, and so we cannot
model it. The absence of this material may explain why the calculated luminosities are too
large at ν ≈ 1011 Hz. For ν � 1013 Hz, both Compton scattering and direct synchrotron
emission from a power-law distribution of electrons may be important; these effects are not
modelled here.
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Figure 2. Spectra taken at iinc = 30◦ using snapshots of the a∗ = 0.94 disc at different points
along its evolution. Lines A–G, respectively, represent tpic = 1150M, 1250M, 1326M, 1434M,

1500M, 1560M, 1666M .

Figure 3. Spectra taken at iinc = 30◦ and tpic = 1250M , but using simulation data
from evolutions with different black hole spins. Lines A–F, respectively, represent a∗ =
0, 0.5, 0.75, 0.88, 0.94, 0.97.

Temporal variations in the spectrum are small at ν � 1011 Hz. Near the peak, the variation
is comparable to current observational sensitivities and may be able to account for some flares.
The complexity of the radiative transfer calculation is evident in the nonuniformity of the time
variability with frequency.

The sensitivity of the spectrum to the time slice used to calculate the spectrum is dwarfed
by the sensitivity of the spectrum to the choice of black hole spin a∗. We find a fairly uniform
trend of increasing bolometric luminosity with spin (while holding the 1 mm flux at 4 J y); the
a∗ = 0.75 and a∗ = 0.88 cases break this trend, but this may just be the result of a temporary
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Figure 4. Spectra taken at tpic = 1250M using a∗ = 0.94 simulation data at different iinc. Lines
A–C, respectively, represent iinc = 5◦, 30◦, 90◦.

fluctuation. The variation of the spectrum with a∗ may be attributable to an increase in
relativistic beaming with spin, and an increase in temperature and magnetic field strength near
the horizon with spin. The latter is not as strong an effect as the former since Ṁ4Jy at a∗ = 0
is about seven times the value at a∗ = 0.97.

The SED dependence on iinc is the most telling in that NIR/IR upper limits likely rule out
edge-on discs with large a∗. Assuming the same trend in iinc at comparable values of a∗, the
NIR/IR upper limits constrain our models to have iinc � 30◦ for a∗ � 0.88 and any inclination
for smaller spins. Coincidentally, iinc � 30◦ is also the range in inclination angle that provides
the best chance at observing the black hole’s silhouette at λ = 1 mm. Recently, the variability
seen in flux and polarization angle at NIR wavelengths has been shown to be consistent with
emission from an orbiting hot spot and ring inclined at �35◦ [64]. Our results with their
constraint on inclination angle then suggest that a∗ � 0.88. Future fits from numerical models
will more strongly constrain the inclination and spin.

4. Accretion disc jets

Jets are almost always seen in our accretion disc simulations. They produce very little emission
in the Sgr A∗ models considered earlier because they are nearly empty of mass at small radii.
As they mix with the surrounding material present at larger radii, the jets may become more
luminous. Since they play no significant role in our calculation of Sgr A∗’s emission, they are
considered separately in this section.

Our simulations of jets launched from accretion flows extend to distances of r ∼ 103M .
They are not dependent on the inner radial boundary condition since it is causally disconnected
from the rest of the numerical domain (i.e. it lies within the event horizon), and we terminate
their evolution before any matter reaches the outer boundary. These outflows are generated
spontaneously by a combination of forces very close to the black hole. They are interesting
because they are easily observable, and their large observed Lorentz factors were used as one
of the first arguments for relativistically strong gravitational fields in the engine that drives
them.
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Figure 5. From left to right are snapshots of γ , ρ◦, b2 and Aφ—whose isosurfaces follow poloidal
magnetic field lines—at tpic = 1500M for a run using 568 × 256 cells. The height of each image
is 2000M . White (red in the colour version) represents the maximum of the colour scale and black
(blue in the colour version) the minimum. Logarithmic colour scales are used for ρ◦ ∈ [10−8, 1]
and b2 ∈ [10−10, 10−3]. Linear colour scales are used for γ ∈ [1, 3.5] and Aφ ∈ [0, 0.08].

Early attempts at studying jets with HARM were plagued by instabilities that we have
since cured by using a new set of coordinates that improve the resolution along the symmetry
axis. Specifically, we use

r = ex1
, θ = πx2 +

2h2

π
sin(2πx2) arctan

[
s
(
x1

0 − x1
)]

, (22)

which are different from the modified Kerr–Schild coordinates described in [28]. Here, x1
0 is

a transition radius where the grid begins to focus towards the axis, the parameter s controls
how quickly this transition is made and h2 controls the strength of the focusing. We set
x1

0 = log(40), s = 2 and h2 = 0.35 so that the cells become more focused along the axis at a
radius beyond the bulk of the disc.

Using these coordinates we performed a run using 568 × 256 cells (more cells are needed
to extend the grid radially). The same initial conditions were used as in the a∗ = 0.94 run of
table 1. We present here data from t = 1500M , which is near the end of the period of time-
steady accretion. At this point, the jet has reached r � 800M . Figure 5 shows snapshots of the
Lorentz factor (γ ≡ αut ), rest-mass density (ρ◦), magnetic field density (b2) and the toroidal
component of the electromagnetic potential (Aφ). Note that poloidal magnetic field lines
follow isosurfaces of Aφ . The jet is magnetically dominated and remains well collimated for
at least the first 103M . The jet seems to be driven by Poynting flux near the poles and—further
away from the axis—by a relativistic wind driven both thermally and centrifugally.

The jet is relativistic, occasionally reaching γ ∼ 10. But the maximum γ reached is
sensitive to the magnitude and profile of the floor. To quantify this dependence, we performed
three runs with 256 × 128 cells using the floor profiles: ρ◦min ∈ {0.2, 1, 5}10−4r−3/2, umin ∈
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Figure 6. Profiles of ρ◦ (black solid line), p (blue long dashes) and b2/2 (red short dashes) are
shown in the top figure. The radial dependence of ṁ (black solid line), ηM (blue long dashes), and
ηEM (red short dashes) are shown in the bottom plot. All quantities are calculated at t = 1500M

using an opening angle of 15◦ from the axes.

{0.2, 1, 5}10−6r−5/2. The maximum values of γ averaged over 0 < θ < 15◦ at t = 1500M

are 6, 2.5 and 2, respectively, for these floors. Differences in the density and pressure profiles
are also present since the floor is reached throughout the polar regions in all these instances.
The lowest floor in this set is close to the stability limit for HARM. By using a higher-order
reconstruction method, it is found that HARM can be extended to reliably evolve similar
outflows with a floor which is sufficiently steep and that the floor is reached only near the base
of the jet [26]. Comparisons between these results and ours further indicate how the floor
affects the jet; for example, our γ is almost a factor of 2 smaller.

The radial profiles of ρ◦, p and b2/2 averaged over �θ = 15◦ from both poles are shown
in figure 6. The thinner lines in the figure are power-law fits to the data at r > 10M . We find

ρ◦ ∼ r−0.9, p ∼ r−0.6, b2 ∼ r−1.6. (23)

The ρ◦ fit agrees with that seen by [26] for r < 120M , but is much shallower than what they
see for r > 120M . This is most likely attributable to the jet accumulating matter from our
larger floor.

Also plotted are the jet luminosity and mass flux efficiencies. The matter and
electromagnetic components of the jet’s luminosity efficiency are

ηM = 2π

ε〈Ṁ〉
∫

dθjet

(−T̂ r
t − ρ◦ur

)√−g dθ, (24)

ηEM = 2π

ε〈Ṁ〉
∫

dθjet

−T̃ r
t

√−g dθ, (25)

where dθjet represents the first 15◦ from both poles, T̂ r
t is the matter component of T r

t , T̃ r
t

is the electromagnetic part of T r
t , ε = 1 − 〈Ė〉/〈Ṁ〉 � 0.13 is effective radiative efficiency,

〈Ṁ〉 � 0.30 is the average mass accretion rate through the horizon over 1000M < t < 1500M
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and 〈Ė〉 � 0.26 is the average energy accretion rate through the horizon over the same period.
The mass flux efficiency is

ṁ = Ṁjet

〈Ṁ〉 = 2π

〈Ṁ〉
∫

dθjet

ρ◦ur
√−g dθ. (26)

The electromagnetic luminosity component is significantly larger for r � 100M . The increase
in the luminosity fraction with radius is partially due to collimation effects; the jet is wider than
15◦ at smaller radii and collimates further out. The similarity in the matter luminosity fraction
and mass flux fraction is most likely from the jet’s accumulation of mass from the floor. We,
however, still see the conversion of electromagnetic flux into matter energy flux seen by others
[26]. Let us assume that the free energy in our jet at large r represents a reasonable estimate
for the ultimate power of the jet. We can then estimate the jet to have a luminosity of

Ljet ≈ 0.013Ṁc2. (27)

This value is similar to that calculated in other studies [26, 27], though each used different
floor schemes.

5. Summary and conclusion

We have presented numerical estimates of the optically thin emission from GRMHD accretion
disc simulations scaled to Sgr A∗ conditions and commented on the character of the jet seen
in similar runs.

Relativistic jets (γ � 10) are seen from our geometrically thick accretion discs that remain
collimated at large distances (r � 1000M). The energy flux is predominantly electromagnetic
at small distances, but equipartition with the matter component is reached by r ∼ 100M . Our
results are qualitatively similar to other studies [26, 27].

The ray-traced images of Sgr A∗ predict that the black hole silhouette will only be obvious
near λ � 1 mm if the disc is inclined less than ∼30◦ to the line of sight. By taking pictures of
the discs at different frequencies, we were able to calculate spectra for different inclinations,
black hole spins and time slices. Significant SED variations were seen with respect to all
these parameters, though degeneracies may exist for certain combinations of parameters. For
instance, increasing a∗ and iinc seemed to increase the power at high frequencies, so a low spin
hole with a large inclination angle may have a similar SED to a high spin hole with a small
inclination angle.

Since the SED varies with time slice, we intend to take time averages of spectra to more
accurately approximate real observations. In addition, we plan on adapting our ray-tracing
code to consistently calculate polarization through plasma on a curved background. This will
allow us to further constrain our model. Other improvements we plan to implement in the
near future include removing the ‘frozen fluid’ approximation which uses data from a single
time slice to calculate the SED, adding Compton scattering and using 3D simulation data.
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