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ABSTRACT

Numerical simulation of magnetohydrodynamic (MHD) turbulence makes it possible to study accretion dynamics
in detail. However, special effort is required to connect inflow dynamics (dependent largely on angular momentum
transport) to radiation (dependent largely on thermodynamics and photon diffusion). To this end, we extend the
flux-conservative, general relativistic MHD (GRMHD) code HARM from axisymmetry to full three dimensions. The
use of an energy conserving algorithm allows the energy dissipated in the course of relativistic accretion to be
captured as heat. The inclusion of a simple optically thin cooling function permits explicit control of the simulated
disk’s geometric thickness as well as a direct calculation of both the amplitude and location of the radiative cooling
associated with the accretion stresses. Fully relativistic ray-tracing is used to compute the luminosity received
by distant observers. For a disk with aspect ratio H/r � 0.1 accreting onto a black hole with spin parameter
a/M = 0.9, we find that there is significant dissipation beyond that predicted by the classical Novikov–Thorne
model. However, much of it occurs deep in the potential, where photon capture and gravitational redshifting can
strongly limit the net photon energy escaping to infinity. In addition, with these parameters and this radiation model,
significant thermal and magnetic energy remains with the gas and is accreted by the black hole. In our model, the net
luminosity reaching infinity is 6% greater than the Novikov–Thorne prediction. If the accreted thermal energy were
wholly radiated, the total luminosity of the accretion flow would be � 20% greater than the Novikov–Thorne value.
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1. INTRODUCTION

For the past 35 years, it has been the prevailing view in the
astrophysical community that the total amount of energy per
unit mass dissipated in the course of accretion onto a black
hole is exactly equal to the binding energy of the innermost
stable circular orbit (Novikov & Thorne 1973, NT hereafter);
consequently, it depends only on the black hole spin parameter
a/M . The argument leading to this result depended on a number
of assumptions: that the flow is time-steady and axisymmetric,
that any heat dissipated is promptly radiated, and that the r–
φ component of stress goes to zero at the innermost stable
circular orbit (ISCO). Although the first several assumptions
appear to be relatively innocuous, the last was regarded as
questionable almost from the beginning (Thorne 1974). Some
have explored the consequences of assuming that the stress is
linearly proportional to the pressure (Muchotrzeb & Paczyński
1982; Matsumoto et al. 1984; Abramowicz et al. 1988), an
assumption that extends the range of stress inside the ISCO
when the proportionality constant is small and the disk is
thick. In this point of view, the cutoff in stress is controlled
by the rapid decrease in gas pressure as the flow moves
inward across the ISCO. More recently, as the importance of
magnetohydrodynamic (MHD) effects to accretion has become
clearer and clearer (Balbus & Hawley 1998), the zero-stress
boundary question has been subject to renewed questioning
(Krolik 1999b; Gammie 1999) on the basis that, as first remarked
in Thorne (1974), there is no particular reason to think that
MHD stresses diminish in importance when the matter density
or pressure fall. Resolution of this point is important because
continued forces at and inside the ISCO would permit continued
dissipation, possibly substantially increasing the total.

Although the significance of magnetic forces was no more
than a speculation when the zero-stress boundary condition was

first criticized, in recent years it has been recognized that they
are, in fact, essential to accretion (Balbus & Hawley 1998).
Stimulated by this recognition, the past decade has seen many
numerical simulations of global disk dynamics incorporating
magnetic forces under the assumption of ideal MHD (Hawley &
Krolik 2001, 2002; Armitage et al. 2001; Reynolds & Armitage
2001; Armitage & Reynolds 2003; Machida & Matsumoto
2003; De Villiers et al. 2003; Krolik et al. 2005; Gammie
et al. 2004). Initially these simulations assumed Newtonian
dynamics in a pseudo-Newtonian potential; in the middle of
this effort, new codes were developed that permit simulations
in general relativity (De Villiers & Hawley 2003; Gammie
et al. 2003). So far, while often treating angular momentum
transport quite accurately, all of these simulations have handled
thermodynamics and energy transport comparatively crudely: In
GRMHD, the code developed by J.-P. De Villiers and J. F. Hawley,
only an internal energy equation is solved, in which the gas is
assumed to behave adiabatically except in shocks; in this code,
therefore, there are sizable (and uncontrolled) numerical losses
of energy whenever magnetic field or kinetic energy is lost
on the gridscale. By contrast, in HARM, the code developed by
Gammie et al., a total energy equation is solved (so no energy
is lost), but there are also no radiative losses. The best effort
that could be made to estimate actual radiative efficiency was
therefore through plausible, but ad hoc models, usually keyed
to the magnetic stress (Beckwith et al. 2008a).

In an effort to remedy this situation, we have altered the
HARM code in two significant ways. First, we have extended it
from two-dimensional (2D; axisymmetric) to three-dimensional
(3D). This extension has two major consequences: we can
study nonaxisymmetric fluctuations, and are free from 2D
artifacts like the “channel solution;” and we are not limited
by the antidynamo theorem to short duration simulations.
Second, we have introduced a toy-model optically thin cooling
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function. By this means, we can track how much radiation
might be produced (and where) in order to compute the radiative
efficiency explicitly. We can also use this cooling function to
regulate the geometric thickness of the accretion flow. A detailed
description of the new code (which we call HARM3D) can be
found in Section 2.

For our first use of this code, we chose to run a simulation
that would illustrate how MHD turbulence influences the global
energetics of accretion onto a black hole. Its results can be
compared directly to those of NT: time-averages of its data can
be matched against the classical model’s steady state. Quantities
integrated over constant-radius shells can be compared with
the corresponding vertically integrated ones derived assuming
axisymmetric and “razor-thin” disks. The cooling function
can be designed to (almost) reproduce the prompt radiation
assumption. However, we have no need to impose any guessed
boundary condition on the stress because in this numerical
calculation we are able to use the real physical boundary
condition to accretion dynamics: the black hole’s event horizon.
Thus, the ratio of the energy radiated in this simulation to the
mass accreted in it provides a direct test of how much the
zero-stress boundary condition affects the radiative efficiency.
In addition, of course, we will also be able to examine the
interesting effects of nonstationary flow, nonaxisymmetry, and
so on.

Because we recognize that quantitative results may well
depend on a number of parameters (magnetic field configuration
and disk thickness, most notably) and because our radiation
model does not fully represent any particular physical situation,
we emphasize that the numbers we present here are only
preliminary samples. When we discuss these results, we will
explain more specifically the degree to which they are model-
dependent. We intend to explore more fully in future work both
how to model this process more realistically and how external
parameters such as magnetic configuration and accretion rate
couple with black hole spin to control the radiative output of
accretion onto black holes.

2. THE COMPUTATION: HARM3D AND THE
PARAMETERS OF OUR SIMULATION

Quite a number of general relativistic MHD (GRMHD)
simulation codes have been written already (Komissarov 1999;
Koide et al. 1999; Gammie et al. 2003; De Villiers & Hawley
2003; Duez et al. 2005; Shibata & Sekiguchi 2005; Anninos
et al. 2005; Antón et al. 2006; Noble et al. 2006; Mizuno et al.
2006; Anderson et al. 2006; Tchekhovskoy et al. 2007; Fragile
et al. 2007; Del Zanna et al. 2007; Cerdá-Durán et al. 2008).
Our starting point for the code used in this paper was the HARM
code (Gammie et al. 2003; Noble et al. 2006). HARM solves the
equations of motion in flux-conservative form, but is restricted
to axisymmetry.3 As we have already mentioned, axisymmetric
calculations suffer from two major drawbacks: the dominance of
“channel solutions,” which are ubiquitous in 2D but unstable in
3D (Balbus & Hawley 1998), and the fact that neither turbulence
nor magnetic field can be sustained indefinitely in 2D. To avoid
these limitations, we extended the algorithm to three spatial
dimensions. HARM’s conservative formulation means that it does

3 Technically, our code’s procedural flow and data structure design developed
from an early 3D version of the HAM code (C. F. Gammie 2006, private
communication) that is now publicly available as a shearing box code
(Gammie 1999–2008; Guan & Gammie 2008). All other routines were either
developed by us, or taken from the public version of HARM found in Gammie
(1999–2008).

not lose energy to numerical dissipation; rather, kinetic and
magnetic energies lost at the gridscale are captured as heat.
At the same time, a conservative formulation permits easy
introduction of a formal radiative cooling term. Thus, our new
global 3D GRMHD code, HARM3D, treats thermodynamic in a
controlled fashion (cf. Shafee et al. 2008).

2.1. Basic Equations

We begin the description of HARM3Dwith an explicit statement
of the equations governing our model. Contrasts with Gammie
et al. (2003; HARM) and Villiers & Hawley (2003; GRMHD) will be
highlighted along the way. We use Greek letters for spacetime
indices, and Roman letters for spacelike indices. The signature
of the metric is the same as the one used in Misner et al.
(1970) (i.e., − + ++), and geometrized units are used such that
G = c = M = 1.

The MHD GRMHD equations of motion include the conti-
nuity equation,

∇μ(ρuμ) = 0, (1)

the equations of local energy conservation

∇μT μ
ν = 0, (2)

and Maxwell’s equations

∇ν

∗
F

μν = 0, (3)

∇νF
μν = Jμ. (4)

Here, ρ is the rest-mass density, uμ is the 4-velocity of the fluid,
Fμν is the Faraday tensor times 1/

√
4π ,

∗
F

μν
is the dual of

this tensor or the Maxwell tensor times 1/
√

4π , and Jμ is the
4-current.4 The total stress–energy tensor is the sum of the fluid
part,

T
μν

fluid = ρhuμuν + Pgμν, (5)

and the electromagnetic part

T
μν

EM = FμλF ν
λ − 1

4gμνF λκFλκ = ‖b‖2uμuν

+ 1
2‖b‖2gμν − bμbν, (6)

where gμν is the metric, h = (1 + ε + P/ρ) is the specific
enthalpy, P is the pressure, ε is the specific internal energy
density, bμ = ∗

F
νμ

uν is the magnetic field 4-vector, and
‖b‖2 ≡ bμbμ is twice the magnetic pressure Pm.5

Equations (1)–(3) can be expressed in flux conservative form

∂tU(P) = −∂iF
i(P) + S(P) (7)

where U is a vector of “conserved” variables, Fi are the fluxes,
and S is a vector of source terms. Explicitly, these are

U(P) = √−g
[
ρut , T t

t + ρut , T t
j , B

k
]T

(8)

Fi(P) = √−g[ρui, T i
t + ρui, T i

j , (biuk − bkui)]T (9)

4 We follow Gammie et al. (2003) in our definition of the electromagnetic
field tensor and magnetic field variables.
5 The magnetic 4-vector bμ defined in this paper is equivalent to that in HARM
and GRMHD, even though our and HARM’s definition is different from GRMHD’s
by a sign. For this reason, GRMHD’s version of our Equation (4) differs by a
sign. These sign differences can all be reconciled by noting that their
electromagnetic field tensors have opposite sign. The resulting equations of
motion are independent of these sign conventions.
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S(P) = √−g
[
0, T κ

λΓλ
tκ , T

κ
λΓλ

jκ , 0
]T

(10)

where g is the determinant of the metric, Γλ
μκ is the metric’s

affine connection, and Bi = ∗
F

it
is our magnetic field.6 The

quantity (ρut + T t
t ) is evolved instead of T t

t as a means of
reducing the magnitude of the internal energy’s numerical error
(Gammie et al. 2003). Note that the source term for the energy
equation is nonzero only when the metric is time-dependent (as
evidenced by its proportionality to Γλ

tκ ). The equations of motion
are closed by an equation of state, P = (Γ−1)ρε, where Γ is the
adiabatic index, set to 5/3 in this work. The primitive variables,
P = {ρ, P, ũi}, are recovered using an optimized version of the
“2D” algorithm described in Noble et al. (2006; note that the
magnetic field variables are treated as conserved variables, so
no recovery is required for them). The primitive velocity is the
flow’s velocity as viewed by a zero angular momentum observer
(ZAMO):

ũi = ui + αWgti, (11)

where α = 1/
√−gtt is the lapse function and W = αut is the

Lorentz factor.

2.2. Initial Data

In the initial state of the simulation, the matter is in an
axisymmetric hydrostatic torus that orbits the black hole with
a specific angular momentum profile slightly shallower than
Keplerian and ur = uθ = 0. The disk is centered about the
equator of the black hole’s spin and is initially assumed to
be isentropic. In curved spacetimes, the angular frequency,
Ω = uφ/ut , is not a simple function of the specific angular
momentum, l = −uφ/ut . For example, one can show that
when ur = uθ = 0 in Boyer-Lindquist coordinates, Ω =
(gtφ −gφφl)/(gtt −gtφl). In order to solve the time-independent
Euler equations, we must therefore specify l(r, θ ). Following
Chakrabarti (1985) and De Villiers et al. (2003), we do this
by assuming that Ω ∼ λ−q , where λ2 = l/Ω. The solution
is simplified by setting λ to its Schwarzschild value λ =√

−gtt /gφφ , which is exact when a = 0 but leads to a
solution marginally out of equilibrium when a 
= 0; the
slight departure from equilibrium insignificantly affects the
disk’s evolution because the magnetic field quickly becomes
dynamically important. Ultimately, we arrive at an equation
for l(r, θ ): l/ lin = (λ/λin)2−q , where lin = l(rin, π/2) and
λin = λ(rin, π/2).

With the intention of closely mimicking the initial conditions
of simulation KDP of De Villiers et al. (2003), we put the
torus pressure maximum at r = 25M and choose an angular
momentum distribution parameter q = 1.67. The torus inner
boundary is rin = 15M , with lin = 4.576. These parameters
yield a disk very similar to that of De Villiers et al., but with a
slightly larger lin.

The solution to Euler’s equations provides us with h and uμ.
The rest-mass density is then calculated from the equations
of state—P = (Γ − 1)ρε and P = KρΓ—and h: ρ =
[(h − 1)(Γ − 1)/(KΓ)](1/(Γ−1)). We suppose that the gas is
nonrelativistic, choosing Γ = 5/3 and K = 0.01. Integrating
over the volume of the initial gas distribution, we find a total rest
mass of 353. This is 20% larger than that in simulation KDP,
a shift due to our slightly different choice of lin. Note that the
code units of gas mass are completely arbitrary.

6 The “CT field” of GRMHD, Bi , is proportional to our magnetic field:
Bi = √−4πgBi .

The initial magnetic field lies entirely within the torus and
follows contours of constant density. The magnitude of the
magnetic field is set so that the volume-weighted integrated
magnetic pressure is 100 times less than the volume-weighted
integrated gas pressure.

The atmosphere surrounding the disk is unmagnetized and
static. The atmosphere’s density and pressure are set to their
smallest allowed values, which are chosen so that the floor
state is in approximate pressure equilibrium: ρfloor = 7 ×
10−9ρmaxr

−3/2 and Pfloor = 7 × 10−11ρmaxr
−5/2(Γ − 1), where

ρmax is the initial maximum value of the rest-mass density in the
disk.

2.3. Radiative Cooling

A magnetized accretion disk is subject to the magnetoro-
tational instability (MRI), which transfers angular momentum
outward. This transfer taps into the available free energy of dif-
ferential rotation, creating the magnetic fields and poloidal ve-
locity fluctuations that make up the resulting MHD turbulence.
This turbulence is dissipative; magnetic and kinetic energy is
lost numerically at the gridscale. Equation (7), however, en-
sures that in the numerical solution all that dissipated energy is
converted to heat. If that heat were retained by the fluid, the disk
would become ever hotter and geometrically thicker. Ultimately
the thermal energy would either be accreted by the hole or be
carried out from the disk by a wind. By adding a loss term to the
energy equation, we can estimate either the luminosity of those
systems in which radiation is efficient or the total heat generated
in those systems in which it is not. We assume that the radiation
described by this loss term is optically thin. It therefore acts as
a passive sink in the local energy conservation Equation (2):

∇μT μ
ν = −Fν, (12)

where Fν is the amount of radiated energy-momentum per unit
4-volume in the coordinate frame. To describe the radiation, we
make the simplest assumption: that the emission is isotropic in
the fluid’s frame:

Fν = Luν (13)

where the “cooling function” L is the rate energy is radiated per
unit proper time in the fluid frame.

The NT assumptions include complete prompt radiation of
all locally dissipated heat. We cannot exactly replicate that
in a simulation, for the gas must retain some thermal energy.
However, we can arrange for the great majority of the heat
to be radiated by constructing a cooling function that keeps
the temperature of the gas at a small fraction of the virial
temperature. In so doing, we can also control the disk’s aspect
ratio H/r , a parameter often considered significant in analytic
disk models.

In different contexts, different definitions of the scale height
H are sometimes used. For a thin isothermal disk in a Newtonian
potential, the density profile is Gaussian, ρ ∝ exp[−z2/(2H 2

G)],
with HG = ci/Ω, for isothermal sound speed ci. Another
common measure of the scale height is the half-width at half-
maximum (HWHM), HHWHM = √

2 ln 2HG. A third is the
vertical density moment,

H ≡
∫

dθdφ
√−g ρ

√
gθθ |θ − π/2|/

∫
dθdφ

√−gρ. (14)

When the profile is Gaussian, H = √
2/πHG = 0.798HG.

We prefer the moment definition because it is a direct measure
of the characteristic mass-weighted disk thickness, it is robust
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with respect to fluctuations, and it is closely related to the
characteristic scale lengths of hydrostatic balance. Ideally, it
would be computed in the fluid-frame, but in the interest of
computational economy we define it in the coordinate frame.
Moreover, when any of these definitions of disk thickness is
taken in ratio to the radius, it should be recalled that the radial
coordinate r is not a proper distance. Unfortunately, there is no
obvious adequate substitute.

In any event, given this definition, the temperature that should
produce a desired aspect ratio H/r in Newtonian gravity is

T∗ = π

2

[
H

r
rΩ(r)

]2

. (15)

In our simulation, we evaluate T∗ in the disk body using the
relativistic orbital frequency Ω(r > risco) = 1/(r3/2 + a/M). In
a more completely relativistic treatment, Ω(r) would be replaced
by ΩKR

1/2
z (r), where ΩK is the Newtonian Keplerian rotation

frequency and Rz is the relativistic correction factor for the
vertical gravity (Abramowicz et al. 1997; notation as in Krolik
1999a).7 Inside the ISCO, we define Ω as the orbital frequency
of a particle with the specific energy and angular momentum of
the circular orbit at the ISCO:

Ω(r < risco) = gφμ(r, θ = π/2) Kμ

gtμ(r, θ = π/2)Kμ

. (16)

Here Kμ is the 4-velocity of the ISCO orbit.
To ensure that the disk stays near the target temperature, the

cooling rate should be rapid (i.e., ∼ Ω), but drop to zero when
the temperature falls below T∗. All of these criteria are satisfied
by a cooling function with the form

L = sΩρε[Y − 1 + |Y − 1|]q, (17)

where Y = (Γ − 1)ε/T∗ and s is a constant of proportionality.
Note that the term in the square brackets serves as a switch,
so that L = 0 whenever Y < 1. The exponent q controls how
rapidly the cooling rate grows when the temperature exceeds the
target. We found that q = 1/2 cools the plasma efficiently while
maintaining a stable evolution, and we set s = 1. Only those
fluid elements on bound orbits, where (1 + ε + P/ρ)ut > −1,
are cooled.

In addition to controlling the vertical thickness of the disk, the
cooling function provides a self-consistent way of comparing
emission from the simulated disk with that expected in a
standard NT model. When making this comparison, we use
the angle-averaged fluid-frame luminosity per unit area (of an
annulus located at the equator) from our 3D simulation data:

Fff(r) =
∫∫

dx(φ)dx(θ)L∫
dx(φ)|θ=π/2

, (18)

where each component of the vector dx(μ) = e(μ)
ν dxν repre-

sents the extent of a cell’s dimension as measured in the fluid
element’s rest frame, and e(μ)

ν is the orthonormal tetrad that
transforms vectors in the Boyer-Lindquist coordinate frame
to the local fluid frame (see Beckwith et al. 2008a for ex-
plicit expressions for the tetrad). The vector dxν is the Boyer-
Lindquist coordinate frame version of the Kerr-Schild vector

7 The expression given in these references contains a typo: E∞ should be
E2∞.

dxν
KS = [0, Δr, Δθ, Δφ](r, θ, φ), where Δr , Δθ , Δφ are the ra-

dial, poloidal, and azimuthal extents of our simulation’s finite
volume cell located at (r, θ, φ).

We also wish to calculate the radiated luminosity measured by
a distant observer in order to include the effect of photon losses
into the black hole. This is done by ray-tracing through the
spacetime and integrating the radiative transfer equation along
geodesics. Redshift factors from differences in inertial reference
frames are automatically taken into account and include such
effects as gravitational redshift and relativistic beaming. As with
the cooling function, we assume that the fluid is optically thin
and—consequently—ignore scattering and absorption.

To briefly summarize our method, we trace a large number of
rays from observers at infinity at 8 polar angles and integrate the
transfer equation along each ray. Since we aim only at estimating
the bolometric luminosity of the disk, and not at computing
its spectrum, we assume that all radiated energy is emitted
at a single frequency equal to the Doppler shifted frequency
of observation. From the transfer solution along each ray, we
construct images of the disk as it would be seen by each of those
observers, and then sum the radiation they receive. In order
to compute the radiation reaching infinity for the NT model
(whose photons are also subject to possible capture by the black
hole and Doppler shifting), we place an emissivity designed
to match the NT surface brightness in the two planes of cells
nearest the equatorial plane. Assuming that the four-velocities
of those cells are exactly those of circular orbits at those radii,
we then compute the luminosity at infinity in this model by the
same ray-tracing technique as employed on our simulation data.
Additional details are given in the Appendix.

2.4. Coordinates, Grid, and Boundary Conditions

Equation (7) is solved using finite volume techniques on a
uniform grid in the so-called “Modified Kerr-Schild” (MKS)
coordinate system described in Gammie et al. (2003). It is based
on the Kerr-Schild (KS) coordinate system that eliminates the
coordinate singularity at the horizon. The modification allows
us to adjust the radial and angular discretization through a con-
tinuous coordinate transformation. We set the MKS parameter
hMKS = 0.3 (Gammie et al. 2003), which makes the poloidal
cell scale at the axis about 5.7 times larger than that at the equa-
tor and allows us to resolve greater detail in the accretion disk
than would be possible with the same number of equally spaced
grid cells.

The simulation reported here used 192 × 192 × 64 cells
in the radial, poloidal, and azimuthal directions, respectively,
with r ∈ [1.28M, 120M], θ ∈ [0.05π, 0.95π ], φ ∈ [0, π/2].
The radial extent is as large as the one used in KDP except
our coordinates penetrate the horizon by five cells. We tested
whether our polar angle discretization adequately resolved the
fastest-growing mode of the MRI by calculating—in the local
fluid frame—the fastest-growing mode’s wavelength and the
local poloidal size of a cell. Averaged over azimuth and time
(over t = [7000M, 15000M]), the fastest-growing mode was
resolved by at least seven cells at all radii. The absolute
minimum number of cells per wavelength for all time and radii
is never smaller than four. For the time discretization, we have
found a Courant factor of 0.8 is adequate when used with the
existing step size control method in HARM.

In the original MKS coordinate system, cells are placed all the
way to the axis. We have introduced a new reflecting boundary
condition that allows us to excise the coordinate singularity
there. With the boundary placed at an angle of 0.05π from
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the axis (as in KDP), the excision enlarges the time step we
can take, speeding up the evolution by about a factor of four
relative to simulations using grids without the cut-out. The radial
boundary conditions are the same as in the released version of
HARM, and we use periodic boundary conditions for the azimuthal
boundaries.

2.5. Algorithmic Details

The equations of motion are integrated using almost the
same high-resolution shock-capturing methods as described
in Gammie et al. (2003). We still use HARM’s Lax-Friedrichs
numerical flux formula, as it is more diffusive than the HLL
formula (Harten et al. 1983) and seems to be stabler for
our purposes. However, the piecewise linear reconstruction
is replaced with a parabolic interpolation method (Colella &
Woodward 1984) as our means of reconstructing values at
cell faces. As in HARM, we use an MC (monotonized central-
differenced) slope limiter. Parabolic reconstruction improves
stability in low-density regions where ‖b‖2/ρ � 1, such as are
found in the funnel (McKinney 2006).

We also use parabolic interpolation in the “Flux-CT” scheme
of Tóth (2000) that preserves the divergence constraint. Orig-
inally, the electromotive forces (EMFs) at the cell faces were
calculated by a second-order accurate two-point averaging pro-
cedure. This method failed to dissipate a cell-scale sawtooth
instability seen in the magnetic field along the intersection be-
tween the inner radial and poloidal boundaries. Parabolic in-
terpolation of the EMFs, however, is successful at quelling the
instability.

Even with the improvements described so far, stably evolving
plasma whose total energy is dominated by magnetic and kinetic
energies is difficult. In a conservative code like HARM3D, the
critical step is deriving good primitive variables, P, from the
conserved quantities. For instance, the magnetic pressure is
typically a few orders of magnitude larger than the gas pressure
in the funnel. The gas pressure is recovered from inverting the
equation for the total energy, T t

t , which involves subtracting
T t

EMt
and the fluid’s inertia term from T t

t . In the funnel, this
operation is essentially a subtraction of two large numbers
whose result will likely be the size of either term’s truncation
error. The subtraction can result in either positive or negative
pressures. This is known as the “positive-pressure problem”
in hydrodynamics and MHD and has been studied extensively
(Ryu et al. 1993; Balsara & Spicer 1999). We have found that
even when positive pressures are recovered, numerical errors
may result in pressure fluctuations that differ by orders of
magnitude between adjacent cells. These fluctuations create
pressure gradients that can accelerate matter and add energy
to the system artificially.

In order to treat the positive pressure problem and correct
for other unphysical states that may arise (e.g., W < 0), we
have completely redesigned HARM’s recovery procedure. The
most significant change is the inclusion of the conservation of
entropy equation

∇μ(Suμ) = 0 (19)

where

S ≡ P

ρΓ−1
. (20)

Following a method similar to that of Balsara & Spicer (1999),
we integrate Equation (19) in parallel with Equation (7). When-
ever the standard primitive variable method fails to converge,
ũi is unphysical, or ρε < 10−2‖b‖2, we use a new inversion

Figure 1. Ratio of mean temperature (Γ − 1)〈ε〉 to target temperature T∗. The
time-averaging interval was 7000–15000M .

method which is identical to the standard one except the total
energy equation is replaced by Equation (20). Even though this
inversion method is guaranteed to yield a positive pressure, it
can either fail to converge to a solution or yield an unphysical ũi .
If either happens, we interpolate P using data from neighboring
cells for which we have successfully calculated P. Finally, we
impose a floor on the pressure and density and ensure W � 50
by renormalizing ũi .

We note that using Equation (19) leads to a method that
no longer conserves total energy to round-off error, but the
impact of these departures from strict conservation is limited.
The entropy equation is substituted for the energy equation
only where the fluid is very strongly magnetically dominated,
and only when no energy-conserving method yields a physical
solution. In the simulation reported here, the net injection
or loss of mass, energy and angular momentum is only ∼
0.001–0.007 times the flux of these quantities through the
numerical domain. After the period of initial transients, the
places where nonconservative effects can be found are almost
exclusively restricted to the edge of the axial cut-out and the
region roughly 45◦ from the polar axis within the ergosphere.

We have verified that our new code is second-order accurate
for smooth solutions and satisfactorily passes the tests described
in Gammie et al. (2003). A quantitative comparison of our code’s
performance to that of GRMHD will be left for future work.

3. RESULTS

Our initial condition is a torus of gas in hydrostatic equilib-
rium, entirely contained within the simulated volume; our goal
is to present results characteristic of an accretion flow with a
fixed aspect ratio in a long-term equilibrium. Before quoting
results directly from the simulation data, we must therefore do
two things: demonstrate that the fixed aspect ratio is achieved,
and define more precisely the degree to which the simulation is
in a statistical steady state with respect to inflow.

3.1. Scale-height Regulation

We set the parameters of our cooling function so that the ratio
of the sound speed to the local orbital speed would produce a
disk with a constant aspect ratio H/r = 0.13. In Figure 1, we
show how well the temperature was held to T∗ by comparing
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Figure 2. Time-averaged density scale height as a function of radius (solid
curve), and time-averaged HWHM (dotted curve). The data were sampled every
20M from t = 7000M to 15000M . Hydrostatic scale height assuming the
shell- and time-averaged temperature but employing the relativistic correction
described in Section 2.3 (dashed curve).

the time-averaged volume-weighted temperature in the bound
accretion flow to the local value of T∗. In the main disk body,
this mean value was about (0.93–0.95)T∗, but it rises sharply
inside the ISCO. In other words, our cooling function succeeded
in holding the disk temperature very close to (in fact, slightly
below) the target temperature, but inside the ISCO, where the
inflow time becomes comparable to or shorter than the cooling
time, the temperature rises well above T∗.

How well our temperature regulation led to a disk aspect
ratio matching the goal value of 0.13 can be seen in Figure 2.
The actual H/r was slightly above the goal (� 0.14) through
most of the simulation volume, but with a tendency to diminish
inward inside r = 20M . At r = 10M , H/r � 0.12; by the
time the flow reaches the ISCO, it is only � 0.07. Comparison
with the curve showing how the scale height changes as a
result of including the relativistic correction to the vertical
gravity (as discussed in Section 2.3) demonstrates that this
thinning at small radius can be largely attributed to neglect
of that effect. Thus, use of our cooling function achieved its
principal goal: to place the scale height of the disk under explicit
control.

Because our cooling function has a target temperature
depending only on radius, at any particular radius the gas in
the main body of the disk is nearly isothermal, and the den-
sity profile is therefore close to Gaussian (Figure 3). At higher
altitudes above the midplane, the density falls slower than the
Gaussian, presumably due to magnetic support. For this reason,
the moment scale height is slightly greater than the HWHM
(Figure 2).

We chose a value of H/r small enough that a key approxima-
tion of the NT theory could be approximately replicated in the
simulation: the prompt radiation of dissipated heat. However,
if the disk is to have a finite thickness, it cannot radiate all its
heat. The parameters we chose for the cooling function yielded
an accretion rate-weighted mean specific enthalpy that was well
described by h � 1+0.031(r/M)−0.8. At large radius, where the
Newtonian approximation applies, the ratio of h − 1 to the net
binding energy is � 0.06(r/M)0.2, while at the ISCO this ratio
is � 0.1. Thus, this toy-model does assure that the majority of
the dissipated heat is radiated.

Figure 3. Time- and azimuthally averaged density (solid curves) at the ISCO
(thin) and r = 12M (thick), each fit to a Gaussian (dashed curves).

3.2. Inflow Equilibrium

If the accretion flow were in a strict steady state, the local
(i.e., shell-integrated) mass accretion rate Ṁ(r) would be the
same at all radii at all times and the mass interior to a given
radius would likewise be constant. In these turbulent disks fed
by a finite mass reservoir, the most we can hope for is that the
time-average local accretion rate is nearly constant as a function
of r through most of the accreting region, and the mass of the
inner disk, after an initial period of growth, eventually levels
off and fluctuates within some range. The degree to which we
approach these goals is shown in Figures 4 and 5. In the left-hand
panel of Figure 4, we see that the accretion rate (measured at the
event horizon) varies by roughly a factor of five in an extremely
irregular way. Nonetheless, as shown in the right-hand panel,
the time-averaged Ṁ(r) is very nearly constant from the horizon
to r � 14M for the latter 8000M of the simulation. The reason
why we choose the interval 7000M–15000M for averaging is
shown in Figure 5. As this figure demonstrates, it takes roughly
the first 7000M of the simulation for the mass of the inner
disk to reach a rough plateau. Because the mass interior to a
given radius fluctuates, we chose the starting point for time-
averaged quantities to be the point at which essentially all the
inner disk had reached at least 90% of its final mass, which is
approximately t = 7000M .

However, for the purposes of estimating the radiative effi-
ciency, we require a tighter definition of inflow equilibrium.
This is because we wish to contrast the computed radiation rate
with the NT rate at an accuracy of a few percent or better. In the
NT model, 23% of the total light is emitted between 12M and
25M , where our simulation shows significant departures from
inflow equilibrium; a further 27% comes from outside 25M ,
where our simulation is not an accretion flow and we do not
compute the luminosity at all. For these reasons, when we con-
trast the NT luminosity with that produced in the simulation, we
adjust the local accretion rates to mimic inflow equilibrium and
attach a carefully chosen representation of large-radius emission
where needed (see below for details).

3.3. Explicit Radiative Efficiency

The fluid-frame emissivity Fff (r) found in the simulation and
the NT prediction for this quantity are displayed in Figure 6.
In the leftmost panel, we show how they compare when
the NT emissivity uses the time-averaged accretion rate at
the horizon over the same interval for which the simulation
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Figure 4. (Left) Accretion rate (in code units) at the event horizon as a function of time. A rate of 0.005 translates to accreting a fraction 0.14 of the initial mass in a
time of 10000M . (Right) Shell-integrated accretion rate as a function of radius, averaged from t = 7000M to 15000M , sampled every 1M .

Figure 5. Mass contained within four sample radii: 14M (solid curve), 12M

(dotted curve), 10M (dashed curve), and 8M (dash-dot curve), all as functions
of time. The thin solid lines mark 90% of the final mass for each of these radii.
A mass of 10 in code units is 2.8% of the initial torus mass.

data were averaged, i.e., t = 7000M–15000M . For precise
comparison of the two radiation models, we remove the effects
of deviations from inflow equilibrium by altering the NT
emissivity so that the value at any given radius corresponds to
the time-averaged accretion rate at that radius, as determined
by the simulation. Put another way, the fluid-frame surface
brightness in a truly time-steady NT model may be written
as (3/4π )(GMṀ/r3)RR(r) (notation as in Krolik 1999a); we
adjust this to (3/4π )(GMṀ(r)/r3)RR(r), with Ṁ(r) the time-
averaged accretion rate at radius r in the simulation. By doing so,
we compare the two radiation models in a way that factors out
any contrasts due solely to fluctuations in the accretion rate. The
adjusted version is shown in the right-hand panel of Figure 6.

As this pair of figures shows, the two models coincide closely
in the main disk body, but contrast sharply near and within the
ISCO, which is at r ≈ 2.3M for this spin. Because the NT model
is founded on energy and angular momentum conservation in
a time-steady disk, this coincidence is no surprise where the
influence of the NT no-stress boundary condition is small. The
principal departure between the two, a systematic offset in which
the simulation curve lies � 10% below the NT curve, is due to
the small fraction of the dissipated heat that the gas must retain to
provide vertical pressure support in the disk. Near the ISCO, the
accretion-weighted mean specific enthalpy is � 0.018 greater

than unity. This thermal energy is 12% of the binding energy at
the ISCO (0.155 per unit rest-mass).

At small radius, however, the fluid-frame surface brightness
of the simulation differs substantially from the NT model. At
r = 3M , the simulation surface brightness is greater by 40%; at
the ISCO, although the NT model would predict no radiation,
the surface brightness indicated by the simulation is roughly the
same as at r = 3M; close to the horizon, the surface brightness
rises to about twice the maximum predicted by the classical
model.

Another way to characterize the contrast between the simu-
lation results and the NT model is through the intermediary of
another analytic model. In the model of Agol & Krolik (2000),
it is supposed that a finite stress is exerted at the ISCO, but all
other assumptions follow those of NT. This model (which we
will abbreviate as AK) is parameterized by the additional effi-
ciency Δε due to the non-zero stress at the ISCO; in the curves
shown in the two panels of Figure 6, Δε = 0.01, a value chosen
as an approximate best fit between the AK model and the simu-
lation data. In the region immediately outside the ISCO, where
the AK model is defined, it does a reasonable job of reproduc-
ing the simulation results, particularly when allowance is made
for the retained heat.

Only some of this radiation reaches infinity, and any that
does arrives with a significant Doppler shift, most often toward
the red. Using the techniques described in Section 2.3 and the
Appendix, we computed the luminosity received at infinity per
unit radial coordinate dL/dr , which is shown in Figure 7. Like
the emissivity in the fluid frame, dL/dr for the simulation data
in the main disk body closely tracks the NT prediction. The only
difference between the two is that the simulation data version
lies slightly (� 10%) below the NT curve: this offset is simply
another reflection of the offset already seen in the fluid-frame
emissivity due to the nonzero heat content of a physical disk. At
small radii, the shelf in the fluid-frame emissivity is transformed
into an inward extension of significant luminosity that extends
from r � 4M to r � 2M . Although the fluid-frame emissivity
extends farther inward, its efficiency in creating luminosity at
infinity is cut off by a combination of increasing redshift and
probability of photon capture by the black hole.

At larger radii, departures from inflow equilibrium become
significant. To compute accurately

∫
dr dL/dr , the data of

our simulation must be both adjusted so as to correspond
to true inflow equilibrium and supplemented by an extension
to larger radius to account for the substantial radiation from
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Figure 6. Radiated flux per unit area in the fluid frame as a function of radius: time-averaged simulation data (solid curve); as predicted by the NT model (dotted
curve); as predicted by the AK model with Δε = 0.01 (dashed curve). (Left) Using the time-averaged data from 7000M to 15000M . (Right) Adjusting the NT and
AK emissivities as described in the text.

Figure 7. Luminosity received at infinity per unit radial coordinate: time-averaged simulation data (solid curve); as predicted by the NT model (dotted curve). (Left)
Using the time-averaged data from 7000M to 15000M . (Right) Adjusting the NT emissivity as described in the text.

radii larger than 25M . Because the time-averaged fluid-frame
emissivity in the simulation tracks the NT model so closely for
5M � r � 12M , we define the simulation luminosity as its
dL/dr integrated from the horizon to r = 12M plus the NT
luminosity at the mean accretion rate from r = 12M outward.

Given that definition, we find that the efficiency with which
this simulation generated light reaching infinity, averaged from
7000M to 15000M , was 0.151. This number is 6% greater than
the NT figure, which is 0.143 after allowing for photon capture.

3.4. Extrapolating to the Complete Radiation Limit

As discussed in the Introduction, our principal goal in this
initial simulation was to achieve as close a test as possible
of the effect of the ISCO stress boundary condition on the
radiative efficiency. We must now evaluate the degree to which
our only approximate replication of the other NT assumptions
affected this test. Time- and azimuthal-averaging should provide
a good approximation to a stationary state and axisymmetry;
incomplete radiation of the dissipated heat is our principal
concern here.

We have already seen that our radiation rate closely tracks the
NT radiation rate in the main disk body, but is about 10% lower.
Thus, to extrapolate to complete radiation, the emission from
this portion of the flow should be increased by this amount. Near
the ISCO, where the effects of the stress boundary condition
become important, we cannot use this comparison method
to estimate the magnitude of the retained heat. Instead, we

observe first that at the ISCO the mean Thomson optical depth
through the disk in our simulation was � 500ṁ, where ṁ is the
accretion rate in Eddington units. The corresponding diffusion
time is � 0.7ṁ orbits. At the same place, the inflow rate is
� 0.6Ω = 1.2π/Porb. Thus, the photon diffusion time near the
ISCO in a real disk should be shorter than the inflow time—and
shorter than our toy-model cooling time Ω−1—for all accretion
rates below Eddington. A second standard of comparison may
be derived from the magnitude of the retained heat. We found
earlier that the accretion-weighted mean specific enthalpy is
� 1 + 0.018 at r � 2M . That the retained heat is � 10% of
the binding energy there is consistent with the fact that � 10%
of the heat dissipated in the main disk body is left unradiated.
Combining these two arguments, we might expect that in the
limit of truly complete radiation of dissipated heat, the efficiency
could have been greater by as much as 0.02, rising perhaps to
� 0.17, 20% above the classical number as adjusted for photon
capture.

Additional heat is created in the plunging region (the mean
accreted specific enthalpy rises from 1.02 at the ISCO to � 1.03
at the horizon), but, as we have already seen, the fraction of
photons escaping from regions so close to the horizon to infinity
is relatively small, so only a small part of the additional 0.01 in
rest-mass equivalent is likely to reach distant observers.

We might also ask what effect truly radiating all the heat
would have on electromagnetic energy fluxes. To approach
this question, we begin by considering it from the point of
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view of the classical (NT) theory of accretion, where much
attention is paid to the r–φ component of the stress tensor
T μ

ν , but little is said about other components except for the
assumption that the stress tensor is orthogonal to the four-
velocity, uμT μ

ν = 0. As Beckwith et al. (2008a) pointed out,
this assumption is consistent with the sort of stress NT had
in mind, i.e., ordinary viscosity, but not necessarily with other
physical stress mechanisms. In particular, it is inconsistent with
MRI-driven MHD turbulence: the electromagnetic stress tensor
contains a term ‖b‖2uμuν , which is manifestly not orthogonal
to the four-velocity; in addition, the turbulence entails another
(generally rather smaller) contribution to the stress tensor
(ρh + ‖b‖2)δuμδuν , where δuμ is the fluctuating part of the
four-velocity. Described in more qualitative terms, the classical
theory accounts for the energy flow due to the work done by the
stress, but not the energy flow due to the advection, by the mean
flow, of an energy density associated with the stress mechanism.

As numerous numerical studies of the MRI-driven turbulence
have shown, the fluid-frame ratio αmag ≡ 2〈brbφ〉/〈‖b‖2〉 �
0.2–0.3 in the disk body, rising by factors of a few in the
plunging region (e.g., Hawley & Krolik 2002). At the order
of magnitude level, the ratio of the advected magnetic energy
flux to the magnetic work is ∼ ur/(αmagru

φ), which is very
small in the disk body, but rises sharply near the ISCO and in
the plunging region. In this simulation, we find that the time-
averaged advected magnetic energy flux per unit rest-mass is
0.03 at the ISCO, a significant contribution to the energy budget.

To complete our extrapolation to complete radiation therefore
means that we need to determine how ur near the ISCO might
change when that limit is taken at fixed accretion rate. Fixing
the accretion rate means that the vertically integrated stress
does not change, and we do not need to estimate how the
stress would change as a function of the disk’s thermal state.
If ur near the ISCO depends primarily on the shape of the
potential, the advected magnetic energy flux per accreted rest-
mass would remain roughly the same. On the other hand, if ur

in this region depends on the gas thermal content in the sense
that it increases with increasing temperature, more complete
radiation would also lead to a smaller rate of magnetic energy
advection, and therefore to a larger net outward Poynting flux
and a larger amount of energy available for dissipation. Which
of these possibilities lies closer to the truth (and under which
circumstances) remains to be determined.

4. SUMMARY AND IMPLICATIONS

Global disk simulations have for many years focused on
dynamical effects, i.e., angular momentum transport leading to
inflow. To link them to observations, however, requires including
considerations of thermodynamics, for the energy to radiate
photons is drawn from the thermal energy of the gas (whether
or not the particle distribution functions are in fact near those
of thermal equilibrium). By combining an energy-conserving
algorithm with an explicit cooling function in a new simulation
code, HARM3D, we are able to begin the first steps toward drawing
that connection.

In this first application of our new technique, we have found
that a disk with H/r � 0.1 accreting onto a black hole with spin
parameter a/M = 0.9 carries thermal and magnetic energy past
the ISCO at a rate � 0.05 per unit rest-mass, while producing
radiation that reaches infinity at a rate � 0.15 per unit rest-mass.
These numbers contrast with those of the classical NT model,
in which the flow carries no thermal or magnetic energy, and
for a/M = 0.9 radiates � 0.14 per unit rest-mass to infinity.

Determining the observed luminous efficiency of a more realistic
accretion disk, as opposed to the ideal NT model, depends on
the careful assessment of several potentially offsetting effects.
First, additional thermal, magnetic, and radiated energy can
be drawn from the orbital energy by magnetic stresses that
can persist through the location of the ISCO and all the way
down to the horizon. However, only a fraction of that energy
need be radiated, with much of the remainder retained as heat
and magnetic field captured by the hole. Next, even if there is
enhanced photon production near and inside the ISCO, for this
particular spin, the combination of comparatively high capture
probability and gravitational redshift means that little radiation
from inside the ISCO reaches infinity. For lower spin holes,
the ISCO is further from the horizon and the plunging region
can be more effectively represented in the luminosity at infinity
(Beckwith et al. 2008a).

These results have implications for the spectral shape of
the emitted radiation. Generically, the effect of the continuing
stresses is to move the radius of peak emission inward and
raise the fluid-frame effective temperature at that location. For
example, in this instance the maximum in dL/dr (after allowing
for photon capture and all Doppler shifts) moves from the NT
prediction of r � 4.3M to r � 3.5M . Similarly, the fluid-frame
flux at the peak of dL/dr is about 30% greater (7% higher
effective temperature) in the simulation data than in the NT
model. In terms of the radiation edge terminology introduced
by Krolik & Hawley (2002) and Beckwith et al. (2008a), we find
that 95% of the radiation reaching infinity is produced outside
r = 2.75M , in contrast to 3.6M in the NT model.

In a previous study, Beckwith et al. (2008a) used the stress
distributions observed in an ensemble of disk simulations to
estimate the dissipation that might be associated with those
stresses, and from this the accretion efficiency and maximum
temperature in the spectrum reaching infinity. After accounting
for photon capture and Doppler-shifting effects, they found
that, depending on the particular simulation examined and the
topology of the initial magnetic field, the luminosity reaching
infinity could be anywhere from 20% to 100% greater than NT
when a/M = 0.9. The low end of this range was produced by an
accretion flow whose initial field was entirely toroidal, the high
end by an accretion flow whose initial field was a large dipolar
loop, as in the present simulation. Thus, there is a sizable gap
between their estimate of the radiative efficiency and ours.

Applying the Beckwith et al. (2008a) expression to our data
leads to a prediction for the dissipation rate very similar to
theirs.8 The fact that our radiation rate is considerably less
than this prediction suggests that the simple ansatz used by
Beckwith et al. (2008a) to directly compute dissipation from
stress and equate dissipation with radiation is a simplification
that likely overestimates the net emission. For example, because
our cooling function’s radiation rate is at most comparable
to the inflow rate near and inside the ISCO, not all the heat
dissipated in that region can be radiated. However, even if all the
heat generated in this simulation were radiated, the increase in
efficiency relative to NT would be only � 20%. In addition, not
all the work done by the stress necessarily goes into a form that is
dissipated. Kinetic and magnetic energies can be advected with
the accretion flow into the black hole, producing no effective
increase in overall efficiency. This point is closely related to the
issue of advected energy discussed in Section 3.4.

8 In fact, the accretion rate histories of the two simulations are remarkably
similar, suggesting that the underlying physics imposes a long-term order
despite the significant difference in computational algorithms.
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Framed in the context of predictions for real accretion flows
in nature, these questions emphasize the importance of realistic
dissipation and radiation physics for obtaining more accurate
accounts of radiation associated with accretion. In the vicinity
of the ISCO, where the energy available for release is largest, one
cannot say with confidence that in general the dissipation and
cooling times are shorter than the inflow time. Moreover, both
processes are likely to depend on the detailed circumstances
pertaining to any particular accreting black hole, so that there
may not be a single efficiency number applicable to all black
holes of a given spin.

In sum, we have shown that by use of a toy-model optically
thin cooling function, it is possible both to control the thickness
of the accretion flow and to tally (approximately) the rate at
which radiation can be produced by dissipation in the flow. At
relatively large radii, where the inflow time is long compared to
the cooling time, our ansatz of substituting gridscale dissipation
for genuine microphysics and radiating the heat so generated
at an arbitrarily chosen rate is capable of capturing the global
energetics of accretion reasonably well. However, at smaller
radii (particularly near and inside the ISCO), where the inflow
time can be comparable to the cooling time, use of realistic
dissipation and radiation rates can be more important.

Having demonstrated the technical feasibility of this ap-
proach, we will next employ it to explore more fully how accre-
tion onto black holes depends on disk thickness and on black
hole rotation rate. In this context, we point out that although
there is a standard notation for describing black hole rotation
(the spin parameter a/M), there are several extant definitions of
the scale height, differing from one another by factors of order
unity. We use the vertical density moment; standardization of
this definition would be of benefit so that different calculations
can be compared quantitatively without confusion.

Lastly, we remark that in this paper we have set aside the
fact that photons are not the only form in which energy can be
sent to infinity from the vicinity of black holes. Accreting black
holes are also capable of driving mass motions, often relativistic,
that can carry significant power in Poynting flux. Simulational
work exploring the associated luminosity has already begun
(McKinney & Gammie 2004; Hawley & Krolik 2006; Beckwith
et al. 2008b). In future work, we will use the new simulation
code introduced here to relate the energetics of those outflows
more closely to the accretion energy budget.

This work was supported by NSF grants AST-0507455
(J.H.K.) and PHY-0205155 (J.F.H.). We thank Charles Gammie
for many enlightening discussions and an early version of
the HAM code. Exploratory simulations were performed on the
DataStar cluster at SDSC and the Woodhen cluster at Princeton
University, while the TeraGrid T3 and Abe clusters at NCSA
were used for our production runs.

APPENDIX

THE RADIATIVE TRANSFER CALCULATION

Our method for calculating the radiative transfer closely
follows the one described by Noble et al. (2007). We have
made many changes to the code, including the ability to
use 3D simulation data, different emission models (such as the
one explained here), and many optimizations that have made it
significantly faster.

The algorithm integrates geodesics from the observer’s cam-
era through the source domain—our simulation data. These

geodesics point toward the camera and the future. A geodesic
represents a path along which a bundle of photons travel. The
Lagrangian form of the geodesic equations is used:

∂xμ

∂λ
= Nμ,

∂Nμ

∂λ
= Γν

μηNνN
η, (A1)

where xμ is the world-line of the photon bundle and Nμ

is the geodesic’s tangent vector parameterized by the affine
parameter λ.

Since there is no absorption or scattering, the radiative transfer
equation takes the form

dI
dλ

= J (λ), (A2)

where I = Iν/ν
3 is the Lorentz invariant intensity, Iν is the

specific intensity, J = jν/ν
2 is the invariant emissivity, jν

is the emissivity, and ν is the local frequency of the photon.
For the purposes of calculating the bolometric luminosity, we
consider only line emission. We can assume either constant
emission frequency (e.g., Fe Kα fluorescence) where we must
integrate over all frequencies at the camera, or constant observer
frequency where we assume the emission is contrived to emit at
a frequency which—when redshifted to the camera’s frame—
is equal to the frequency of observation. It is easy to show that
both methods give the same bolometric luminosity. We therefore
choose the latter method as it requires less computational effort.

We assume that the radiation is emitted isotropically, so
jν ∝ L/(4π ) but we must also take into account the constraint
that the fluid’s emission frequency is the blueshifted frequency
at the observer:

J (λ) = L
4πν2

δ(ν − νo/G(λ)), (A3)

where G(λ), the redshift factor, is the ratio of the photon’s energy
measured by the camera to the photon’s energy measured by the
fluid:

G(λ) = wμNμ(λcam)

uμ(xμ(λ)) Nμ(λ)
. (A4)

Here, wμ is velocity of the camera, which is assumed to be
static in flat space; this is a good approximation as we place the
camera 106M away from the black hole.
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Cerdá-Durán, P., Font, J. A., Antón, L., & Müller, E. 2008, A&A, 492, 937
Chakrabarti, S. K. 1985, ApJ, 288, 1
Colella, P., & Woodward, P. R. 1984, J. Comput. Phys., 54, 174
De Villiers, J.-P., & Hawley, J. F. 2003, ApJ, 589, 458
De Villiers, J.-P., Hawley, J. F., & Krolik, J. H. 2003, ApJ, 599, 1238

http://dx.doi.org/10.1086/166683
http://adsabs.harvard.edu/cgi-bin/bib_query?1988ApJ...332..646A
http://adsabs.harvard.edu/cgi-bin/bib_query?1988ApJ...332..646A
http://dx.doi.org/10.1086/303869
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...479..179A
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...479..179A
http://dx.doi.org/10.1086/308177
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...528..161A
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...528..161A
http://dx.doi.org/10.1088/0264-9381/23/22/025
http://adsabs.harvard.edu/cgi-bin/bib_query?2006CQGra..23.6503A
http://adsabs.harvard.edu/cgi-bin/bib_query?2006CQGra..23.6503A
http://dx.doi.org/10.1086/497294
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...635..723A
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...635..723A
http://dx.doi.org/10.1086/498238
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...637..296A
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...637..296A
http://dx.doi.org/10.1046/j.1365-8711.2003.06491.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.341.1041A
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.341.1041A
http://dx.doi.org/10.1086/318990
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...548..868A
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...548..868A
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1006/jcph.1998.6108
http://adsabs.harvard.edu/cgi-bin/bib_query?2008arXiv0801.2974B
http://adsabs.harvard.edu/cgi-bin/bib_query?2008arXiv0801.2974B
http://dx.doi.org/10.1086/533492
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...678.1180B
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...678.1180B
http://adsabs.harvard.edu/cgi-bin/bib_query?2008arXiv0804.4572C
http://adsabs.harvard.edu/cgi-bin/bib_query?2008arXiv0804.4572C
http://dx.doi.org/10.1086/162755
http://adsabs.harvard.edu/cgi-bin/bib_query?1985ApJ...288....1C
http://adsabs.harvard.edu/cgi-bin/bib_query?1985ApJ...288....1C
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://dx.doi.org/10.1086/373949
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...589..458D
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...589..458D
http://dx.doi.org/10.1086/379509
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...599.1238D
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...599.1238D


No. 1, 2009 DIRECT CALCULATION OF THE RADIATIVE EFFICIENCY OF AN ACCRETION DISK 421

Del Zanna, L., Zanotti, O., Bucciantini, N., & Londrillo, P. 2007, A&A, 473,
11

Duez, M. D., Liu, Y. T., Shapiro, S. L., & Stephens, B. C. 2005, Phys. Rev. D,
72, 024028

Fragile, P. C., Blaes, O. M., Anninos, P., & Salmonson, J. D. 2007, ApJ, 668,
417

Gammie, C. F. 1999, ApJ, 522, L57
Gammie, C. F. 1999–2008, Astrophysical Code Library,

http://rainman.astro.uiuc.edu/codelib/
Gammie, C. F., McKinney, J. C., & Tóth, G. 2003, ApJ, 589, 444
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