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ABSTRACT

Magnetobremsstrahlung (MBS) emission and absorption play a role in many astronomical systems. We describe
a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and
unpolarized light in a plasma with a general distribution function. Along the way we provide an accurate scheme
for evaluating Bessel functions of high order. We use our scheme to evaluate the accuracy of earlier fitting formulae
and approximations. We also provide an accurate fitting formula for mildly relativistic (kT /(mec

2) � 0.5) thermal
electron emission (and therefore absorption). Our scheme is too slow, at present, for direct use in radiative transfer
calculations but will be useful for anyone seeking to fit emission or absorption coefficients in a particular regime.
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1. INTRODUCTION

In many astronomical plasmas the electron distribution in-
cludes an approximately thermal, mildly relativistic compo-
nent. As theoretical models of such systems advance, it is
useful to have a fast, accurate scheme to calculate the mag-
netobremsstrahlung (MBS), or cyclo-synchrotron, spectra. It is
particularly desirable to be able to evaluate the necessary ab-
sorption and emission coefficients for polarized radiation from
a general electron distribution, since in the collisionless condi-
tions common in low luminosity active galactic nuclei electron
distributions are unlikely to precisely follow the commonly as-
sumed thermal or power-law forms.

Usually MBS spectra are calculated using emission and ab-
sorption coefficients derived under an ultrarelativistic (syn-
chrotron) approximation or, for mildly relativistic electrons,
using approximate fitting formulae. The fitting formulae are
accurate over a limited range in frequency ν, field strength B,
observer angle θ (the angle between the emitted or absorbed pho-
ton and the magnetic field vector B), or characteristic Lorentz
factor for the electrons. In this work we provide, test, and apply
a general scheme for calculating MBS emission and absorption
coefficients. One potential application of our methods is to gen-
erate new, more accurate, and computationally efficient fitting
formulae over the range of interest.

Approximate calculations of MBS emission and absorption
coefficients have a rich history. In the ultrarelativistic limit,
emission of an electron with Lorentz factor γ is limited to a
cone defined by the oscillating velocity vector of the electron,
with angular width 1/γ . This leads to an approximate expression
for dP/dν (Westfold 1959; Bekefi 1966; Rybicki & Lightman
1979), the power per unit frequency interval. However, for
γ ∼ 1, the approximation worsens, cyclotron line features begin
to appear in the spectrum, and the ultrarelativistic approximation
must be abandoned.

For mildly relativistic electrons the emission is still mainly
perpendicular to the magnetic field. This fact can be used to
develop approximate analytic expressions for the emissivity.

Petrosian (1981) used the method of steepest descent, and
an asymptotic expansion of the Bessel functions, to find the
emissivity of mildly relativistic thermal electrons (see also
Pacholczyk 1970).

Robinson & Melrose (1984) and Dulk (1985) improved
Petrosian’s (1981) calculation for thermal electrons at temper-
ature T by using more accurate asymptotic expansions of the
Bessel functions that appear in the exact expression for the
emissivity, and some interpolation formulae, to provide a ther-
mal MBS emissivity that is valid over a wide range in T , ν, θ,
and B. Brainerd & Lamb (1987) numerically calculate emis-
sivity for various distributions and energy injection functions.
Brainerd & Petrosian (1987) calculate emissivity in the regime
that quantum effects are important. Chanmugam et al. (1989)
compared several approximate equations with numerical results
in the cyclotron limit and concluded that Robinson & Melrose
(1984) gave the best result. Mahadevan et al. (1996) found ap-
proximate formulae for the θ -averaged emission coefficient by
fitting to a direct numerical evaluation of the emissivity.

Wardzinski & Zdziarski (2000) combined the approximate
equations in Petrosian (1981) and Petrosian & McTiernan
(1983) to find an approximate emissivity accurate over a
larger range of temperature. Their expressions contain a slight
discontinuity, however, because they joined two asymptotic
limits without smoothing the intermediate regime. They also
found an approximate θ -averaged emissivity.

For polarized light, Kawabata (1964) and Meggitt &
Wickramasinghe (1982) gave complicated but exact integral ex-
pressions for the specific emissivities in the Stokes formalism,
but they did not provide any easily evaluated approximations.
Väth & Chanmugam (1995) used the results of Robinson & Mel-
rose (1984) to obtain the approximate equations and compared
the results with a direct numerical evaluation of the emissivity
in the cyclotron regime.

We began this work because, in attempting to calculate polar-
ized emission spectra for our simulation, we found we needed
to evaluate the accuracy of earlier approximate expressions in
the regime of interest to us. Here we provide what we hope is a
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transparent, well-documented procedure that will enable others
to avoid our descent into the minutiae of synchrotron theory.
Our MBS calculator has a broad range of validity (described in
Section 4) and should therefore be useful for anyone seeking
to obtain or test approximate expressions in their domain of
interest.

The main approximations we make are (1) (ν/νp)2 � 1 and
(2) (ν/νp)2(ν/νc) � 1, where the electron plasma frequency

νp ≡
(

nee
2

πme

)1/2

= 8980n1/2
e Hz (1)

(we use Gaussian/cgs units throughout) and the electron cy-
clotron frequency

νc ≡ eB

2πmec
= 2.8 × 106B Hz. (2)

When these conditions are violated the index of refraction
is noticeably different from 1 and corrections must be made
throughout our formalism. We also assume that the magnetic
field strength is weak enough such that quantum effects can be
neglected (see discussion in Brainerd & Lamb 1987 for details).

The plan of this paper is as follows. In Section 2, we fix
notation by writing down the equations of polarized radiative
transfer in Stokes and Cartesian polarization bases. In Section 3,
we discuss methods for calculating the emission and absorption
coefficients for a general distribution function. In Section 4,
we recall the usual asymptotic expressions that can be used as
code checks. In Section 5, we describe our numerical code,
called harmony. In Section 6, we evaluate the accuracy of
earlier work and provide a convenient fitting formula for the
total emissivity (and therefore absorptivity) of thermal electrons
with Θe ≡ kTe/(mec

2) � 0.5. Appendix A briefly describes the
distinction between emitted and received power. Appendix B
describes an accurate and efficient scheme for evaluating high-
order Bessel functions.

2. RADIATIVE TRANSFER

We are concerned with electromagnetic wave propagation
at frequency ν in the frame of a magnetized, ionized plasma.
The plasma may have a thermal electron component with
dimensionless temperature Θe; there may also be a nonthermal
component in the electron distribution.

In the regime of interest an electromagnetic wave can be
written as a sum of the magnetoionic modes of the plasma, the
ordinary (O) and extraordinary (X) modes. In the simplest case
of a cold plasma, for which the thermal speed is much less than
the phase velocities of waves in the plasma, these modes are
nearly circularly polarized except for propagation in a narrow
range of angles perpendicular to the field. In general the modes
are elliptically polarized.

The polarization properties of the magnetoionic modes are
described by a pair of orthonormal basis vectors eO and
eX, which can be written in terms of unit vectors along the
wavevector k, along k × B, and perpendicular to both k and
B. Let TO (TX) be the ratio of coefficients along the two
transverse components of the polarization vector of the ordinary
(extraordinary) mode, with |TX| � 1. In other words, |TO,X| are
the axial ratios of the orthogonal polarization ellipses, so that
TOTX = −1. Then

eO ≡ {eO1, eO2} = 1√
T 2

X + 1
{−1, iTX} (3)

and

eX ≡ {eX1, eX2} = 1√
T 2

X + 1
{TX, i} , (4)

where {x, y} are the Cartesian components of a vector in the
plane perpendicular to the direction of propagation ẑ, and ŷ
is perpendicular to the magnetic field so that x̂ × ŷ ≡ ẑ. The
electric field of mode A is E = EeA exp(ikz − iωt). In writing
these equations we have assumed that the polarization modes
are orthogonal, valid when ν3/(νp

2νc) � 1.

2.1. Descriptions of Polarized Radiation

The polarized intensity is most familiarly described by the
Stokes vector IS = {I,Q,U, V }; here, all components have the
usual intensity units, dE/dtd2xdνdΩ, i.e., energy per unit time
per unit area per unit frequency per unit solid angle.

The polarized intensity can also be described in terms of a
polarization tensor written in a Cartesian coordinate basis (∗
denotes complex conjugate):

Iij ≡ I

E2
〈EiE

∗
j 〉 = 1

2

(
I + Q U + iV

U − iV I − Q

)
, (5)

where i, j ∈ {x, y} and the prefactor converts the tensor to
intensity units.

Finally, the polarized intensity can be described by a polar-
ization tensor in the mode basis

IAB = e∗
AieBj Iij

= 1

2

(
I − Q cos χ − V sin χ −V cos χ + Q sin χ − iU

−V cos χ + Q sin χ + iU I + Q cos χ + V sin χ

)
(6)

where A,B ∈ {O,X} and χ = tan−1 TX.

2.2. Polarized Radiative Transfer

In the Stokes basis in a uniform plasma the radiative transfer
equation is

d

ds
IS = JS − MST IT , (7)

where JS = {jI , jQ, jU , jV }T contains the emission coefficients,
which have units of dE/dtdV dνdΩ, and the Mueller matrix
MST is

MST ≡

⎛
⎜⎝

αI αQ αU αV

αQ αI rV −rU

αU −rV αI rQ

αV rU −rQ αI

⎞
⎟⎠ . (8)

The parameters αi are the absorption coefficients and rQ, rU ,
and rV are what we will call Faraday mixing coefficients. jU , αU ,
and rU are zeros for our choice of basis vectors. Below, we will
provide a scheme for evaluating the emission and absorption
coefficients.

In the Cartesian polarization tensor basis in a uniform plasma
the transfer equation is

dIij

ds
= Jij − μijklIkl, (9)

where the tensor μ describes absorption and Faraday rotation.
In the mode basis in a uniform plasma

dIAB

ds
= JAB − μABCDICD. (10)
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Contracting the indices, we define αA by

dIAA

ds
= −αAIAA, (11)

for radiation consisting of a single mode in the absence of
emission and Faraday rotation.

3. MAGNETOBREMSSTRAHLUNG EMISSION
AND ABSORPTION

We are now ready to calculate absorption and emission
coefficients. These are frame-dependent. We will evaluate them
in the plasma center-of-momentum frame (the expressions given
below do not assume this). The total emission and absorption
coefficients can be transformed using the Lorentz invariance of
jν/ν

2 and ναν . The transformation of the full absorption matrix
will be discussed in future work.

3.1. Emissivity

A consistent procedure for calculating the emission and ab-
sorption coefficients can be found in Melrose & McPhedran
(1991). Beginning with their Equation (22.20), rotating the ve-
locity potentials Vi onto a basis where the z-direction is aligned
with the wavevector, and introducing appropriate leading con-
stants, the emissivity in the Cartesian polarization basis is

Jij = 2πe2ν2

c

∫
d3p f

∞∑
n=1

δ(yn) Kij (12)

where
Kxx = M2J 2

n (z), (13)

Kyy = N2J ′2
n (z), (14)

Kxy = −Kyx = −iMNJn(z)J ′
n(z), (15)

and

yn ≡ nνc

γ
−ν(1−β cos ξ cos θ ) = 1

2π
(ω−nΩ−k‖v‖) (16)

is the argument of the δ function in the resonance condition,
Ω = 2πνc/γ is the relativistic electron cyclotron angular
frequency, β ≡ v/c, v is the electron speed, ξ is the electron
pitch angle,

z ≡ νγβ sin θ sin ξ

νc
= k⊥v⊥

Ω
, (17)

M ≡ cos θ − β cos ξ

sin θ
, (18)

N ≡ β sin ξ, (19)

f ≡ dNe

d3xd3p
= dne

d3p
(20)

is the electron distribution function, and d3x and d3p are differ-
ential volumes in real space and momentum space, respectively.
Subscripts ‖ and ⊥ refer to components of vectors parallel and
perpendicular to B.

The emissivity in the Stokes basis can be found using the
transformation implied by Equation (5):

JS = 2πe2ν2

c

∫
d3p f

∞∑
n=1

δ(yn)KS (21)

where
KI = M2J 2

n (z) + N2J ′2
n (z), (22)

KQ = M2J 2
n (z) − N2J ′2

n (z), (23)

KU = 0, (24)

and
KV = −2MNJn(z)J ′

n(z). (25)

In the mode basis

JAB = 2πe2ν2

c

∫
d3p f

∞∑
n=1

δ(yn)KAB (26)

where

KXX = [MTXJn(z) + NJ ′
n(z)]2

1 + T 2
X

, (27)

KOO = [MJn(z) − NTXJ ′
n(z)]2

1 + T 2
X

, (28)

and

KXO = KOX = − [MJn(z) − NT J ′
n(z)][MT Jn(z) + NJ ′

n(z)]

1 + T 2
X

.

(29)
In the cold plasma limit, the axial ratios are (e.g., Melrose 1989)

TO,X ≡ T± ≈ 2ν cos θ

νc sin2 θ ∓
√

νc
2 sin4 θ + 4ν2 cos2 θ

for ν � νp.

(30)

The polarized emissivities are related to the total emissivity
by

jν ≡ JI = Jxx + Jyy = JOO + JXX ≡
∫

d3pf ην, (31)

where

ην ≡ dE

dνdtdΩ
(32)

is the single-electron emissivity.

3.2. Absorption Coefficients

If the distribution function is thermal then the absorption
coefficients follow from Kirchhoff’s law. For a nonthermal
plasma we must calculate the absorption coefficients directly.

If the plasma is weakly anisotropic (i.e., the anisotropic effect
is perturbative) then it is possible to simply relate the absorption
coefficients to the anisotropic, antihermitian part of the dielectric
tensor. Starting with the dielectric tensor of a magnetized plasma
(Equation (22.47) of Melrose & McPhedran 1991, corrected by
a factor of 4π/ω2, or Equations (10)–(48) of Stix 1992), and
using the Plemelj relation to find the imaginary part of the
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integral over momentum space (and thus the antihermitian part
of the dielectric tensor), we find

μijkl = ce2

ν

∫
d3p Df

∞∑
n=1

δ(yn)Kijkl, (33)

where
Kxxxx = M2J 2

n (z), (34)

Kxxyx = Kxyxx = Kxyyy = Kyyyx = − i

2
MNJn(z)J ′

n(z),

(35)

Kxxxy = Kyxxx = Kyxyy = Kyyxy = i

2
MNJn(z)J ′

n(z), (36)

Kxyxy = Kyxyx = 1

2

[
M2J 2

n (z) + N2J ′2
n (z)

]
, (37)

Kyyyy = N2J ′2
n (z), (38)

all other components of K vanish, and the operator D is

Df ≡
(

ω − k‖v‖
v⊥

∂

∂p⊥
+ k‖

∂

∂p‖

)
f. (39)

In writing this equation, we assume that the energy of the ab-
sorbed photon is small compared to the width of the distribution
function, permitting us to replace a difference with the deriva-
tive operator D. For a thermal distribution this requires that
hν/kTe � 1.

In terms of p = |p| and cos ξ , the operator D is

Df = 2πν

cβ

(
∂

∂p
+

β cos θ − cos ξ

p

∂

∂ cos ξ

)
f, (40)

and in terms of γ and cos ξ ,

Df = 2πν

(
1

mec2

∂

∂γ
+

β cos θ − cos ξ

pβc

∂

∂ cos ξ

)
f. (41)

In the Stokes basis,

αS = −ce2

2ν

∫
d3p

∞∑
n=1

δ(yn)Df KS, (42)

where subscript S is one of I, Q, U, and V. In the mode basis

αA = −ce2

ν

∫
d3p

∞∑
n=1

δ(yn)Df KAA, (43)

where subscript A is O or X.
Let us explicitly verify Kirchhoff’s law for a thermal distri-

bution function in the Stokes basis:

JS − αSBν = 0, (44)

where Bν = (2hν3/c2)[exp(hν/kTe) − 1]−1 is the Planck
function. Using Equations (21) and (42), and gathering like
terms, this becomes

∫
d3p

∞∑
n=1

δ(yn)KS

(
2πe2ν2

c
f +

ce2

2ν
Df Bν

)
= 0. (45)

If we make γ the nontrivial momentum space coordinate, then
f = N exp(−γ /Θe), where N (Θe) is a normalization constant,
and Df = −2πNν exp(−γ /Θe)/(mec

2Θe). This leaves

∫
d3p

∞∑
n=1

δ(yn)KS

(
2πe2ν2

c

)
Ne−γ /Θe

×
(

1 − hν/(kTe)

exp(hν/(kTe)) − 1

)
= O

(
hν

kTe

)
. (46)

This is consistent with the assumption that the energy of
the absorbed photon is small compared to the width of the
distribution function; to lowest order in hν/kTe Kirchhoff’s law
is satisfied.

3.3. Electron Distribution Function

The electron distribution can be written using a variety of
momentum space coordinates, and this can be a source of some
confusion. For example, with respect to the auxiliary momentum
coordinates γ , ξ, and φ (the longitudinal coordinate), d3p can
be expressed as m3

ec
3γ 2βdγ d(cos ξ )dφ and the distribution

function as

f ≡ dne

d3p
= 1

m3
ec

3γ 2β

dne

dγ d(cos ξ ) dφ

= 1

2πm3
ec

3γ 2β

dne

dγ d(cos ξ )
, (47)

where the final equality arises from assuming that the distribu-
tion is independent of φ. Equation (42) becomes

αS = −ce2

2ν

∫
dγ d(cos ξ )

∞∑
n=1

δ(yn)γ 2βD

×
[

1

γ 2β

dne

dγ d(cos ξ )

]
KS (48)

and similarly for the absorption coefficients in the mode basis.
The thermal (relativistic Maxwellian) distribution function is

dne

dγ dΩp

≡ dne

dγ dφd(cos ξ )
= ne

4πΘe

γ (γ 2 − 1)1/2

K2(1/Θe)
exp

(
− γ

Θe

)
;

(49)
dΩp is a differential solid angle in momentum space and K2 is
a modified Bessel function of the second kind.

A useful nonthermal distribution function is the isotropic
power-law distribution

dne

dγ dΩp

= nNT
e (p − 1)

4π
(
γ

1−p
min − γ

1−p
max

)γ −p for γmin � γ � γmax,

(50)
where nNT

e is the number density of nonthermal electrons.

4. ULTRARELATIVISTIC LIMIT

For clarity it is helpful to record the emission and absorption
coefficients for a thermal electron distribution and for a power-
law distribution of electrons in the ultrarelativistic limit. These
are well known but presented here in a consistent set of units
and notation so that we can check our numerical results.

The emissivity of a single ultrarelativistic electron can be
reduced through a standard approximation (e.g., Westfold 1959;
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Ginzburg 1970)

∫
dΩpην �

√
3e3B sin θ

mec2
F

(
ν

νcr

)
, (51)

where νcr = (3/2)νc sin θγ 2, and the synchrotron function

F (x) ≡ x

∫ ∞

x

dtK5/3(t). (52)

The asymptotic expansions of F (x) are

F (x) =
⎧⎨
⎩

22/3Γ(2/3)x1/3 + O(x) for x � 1(πx

2

)1/2
exp(−x)(1 + O(x−1)) for x � 1

⎫⎬
⎭ .

(53)
For a thermal distribution with Θe � 1, K2(1/Θe) � 2Θ2

e

and
dne

dγ dΩp

� neγ
2

8πΘ3
e

exp(−γ /Θe). (54)

For ν � νs ≡ (2/9)νcΘ2
e sin θ , the small-x limit of Equation (53)

can be used, most of the emission comes from electrons with
γ ∼ Θe, and the emissivity is

jν � 24/3π

3

nee
2νs

cΘ2
e

X1/3, (55)

where
X ≡ ν

νs
. (56)

For ν � νs the large-x limit of Equation (53) applies.
The integrand is proportional to exp(−γ /Θe − ν/νcr), where
νcr ∼ γ 2, so the peak emission is from electrons with γ ∼
(νΘe/(νc sin θ ))1/3. Then,

jν � ne

√
2πe2νs

6Θ2
ec

X exp(−X1/3), (57)

and the integral has been evaluated using the method of steepest
descent (Petrosian 1981).

For the isotropic power-law distribution of electrons the
integration can be done explicitly without using the asymptotic
expansion for F (x) if p > 1. Most of the emission comes from
electrons with γ 2 ∼ ν/νc, and the emissivity is (Blumenthal &
Gould 1970)

jν = nNT
e

(
e2νc

c

)
3p/2(p − 1) sin θ

2(p + 1)
(
γ

1−p
min − γ

1−p
max

)Γ
(

3p − 1

12

)

× Γ
(

3p + 19

12

) (
ν

νc sin θ

)−(p−1)/2

(58)

for γ 2
min � ν/νc � γ 2

max. The absorptivity, famously, cannot
be obtained from Kirchhoff’s law, but can be evaluated using
Equation (42). The result is (see, e.g., Rybicki & Lightman 1979
for a discussion)

αν = nNT
e

(
e2

νmec

)
3(p+1)/2(p − 1)

4
(
γ

1−p
min − γ

1−p
max

)Γ
(

3p + 2

12

)

× Γ
(

3p + 22

12

)(
ν

νc sin θ

)−(p+2)/2

, (59)

again for γ 2
min � ν/νc � γ 2

max. Note that this expression
for the absorptivity is proportional to nNT

e e2/(νmec). Since
(nNT

e e2/me)1/2 is a plasma frequency for the nonthermal elec-
trons, the absorption coefficient has the expected dimensions of
1/length.

5. NUMERICAL CALCULATIONS

The emission and absorption coefficients all require the
numerical evaluation of expressions of the following form:

∫ ∞

1
dγ

∫ 1

−1
d cos ξ

∞∑
n=1

δ(yn)I (n, ξ, γ ), (60)

where I is some function, ξ is the electron pitch angle, γ is the
electron Lorentz factor, and n is the harmonic index (see, e.g.,
Equation (21)), and the resonance condition is

yn ≡ nνc

γ
− ν(1 − β cos ξ cos θ ) = 0, (61)

which involves all three independent variables: γ, ξ, and n.
Recall that the resonance condition arises because each electron
emits only at integer multiples of its own cyclotron frequency,
Doppler shifted to the plasma rest frame.

5.1. Previous Work

Many have evaluated the absorption and emission coefficients
numerically. Early efforts include the calculation of jν(θ ) by
Takahara & Tsuruta (1982) for n up to several hundred. Melia
(1994) calculated the emissivity numerically for θ = π/2.

The emissivity is sharply peaked at particular ν; the inte-
grand is not well behaved. Mahadevan et al. (1996) resolved
the resulting numerical difficulty by replacing the δ function
with a broadening function of adjustable frequency width and
evaluating the full three-dimensional integral. Only an observer
angle-averaged emission coefficient, j̄ν ≡ ∫ 1

0 jν(θ )d(cos θ ),
was found. The resonance condition was also used to simplify
the integral.

Marcowith & Malzac (2003) found the angle-averaged emis-
sion coefficient by two methods. The first was similar to
Mahadevan et al. (1996) except that a different broadening func-
tion was used. Another method, “direct integration,” used the
resonance condition to select an observer angle.

Wolfe & Melia (2006) calculated the angle-averaged single-
particle emissivity and extended the summation to the 990th
harmonic to increase the accuracy of the result. The calculation
was done by replacing the δ function with a broadening
function, as in Mahadevan et al. (1996). The single-particle
emissivity was then fitted with >1500 coefficients over the range
−1 < log10(ν/νc) < 2 and 0.1 < β < 0.98. For the thermal
emissivity, they explicitly evaluated the γ integral for β < 0.97;
for β > 0.97 they used an approximation from Petrosian (1981).
They restricted their calculation to −1 < log10(ν/νc) < 2; they
did not offer an explicit control for the accuracy of the n � 990
approximation for a particular γ .

5.2. Numerical Procedure

We use the resonance condition (61) to eliminate cos ξ from
Equation (60). This is simpler than eliminating γ (because the
resonance condition is quadratic in β), and also simpler than

5



The Astrophysical Journal, 737:21 (14pp), 2011 August 10 Leung, Gammie, & Noble

eliminating n (because n must take on integer values). The
remaining integral has the form∫ γ+

γ−
dγ

∞∑
n=n−

(
1

νβ|cos θ |
)

I (n, ξ, γ ) (62)

and the term in parentheses, |dyn/d cos ξ |−1, comes from
integrating over the δ function. The range of integration is now
restricted by the requirements that |cos ξ | < 1 and that γ be
real.

The limits on the γ integration follow from |cos ξ | < 1. Write
the resonance condition

cos ξ = γ ν − nνc

γ νβ cos θ
, (63)

and set cos ξ = ±1 to find

γ± = nνc/ν ± |cos θ |
√

(nνc/ν)2 − sin2 θ

sin2 θ
. (64)

Note that γ− reaches a minimum of 1 for nνc/ν = 1, so γ− � 1.
The argument of the square root in Equation (64) must be

non-negative. This restricts the range of n to

n � n− = ν

νc
|sin θ |. (65)

At n−, γ+ = γ−.
We need to choose an order to evaluate the integrals (sums)

in Equation (62). If the sum is done first then the remaining
integrand is a rapidly varying, comb-like, function of γ for θ
close to π/2. If the γ integration is done first the remaining sum-
mand is a smooth function of n and therefore more numerically
tractable. We therefore do the γ integration first.

5.3. Upper Limit of Summation

The summation in Equation (62) extends to n = ∞, so for
numerical summation we must either map n onto a finite domain
or else choose an upper limit n+ to the sum, beyond which the
integrand is negligible. We have taken the latter approach.

For the special case of a thermal electron distribution we set
n+ = Cnpeak, where the integrand peaks near npeak and C > 1
is a dimensionless constant. At ν � νcΘ2

e , the integrand peaks
when Jn(z) peaks, at z/n � 1, i.e., near

n = npeak = γ
ν

νc
(1 − β2 cos2 θ ). (66)

The thermal distribution is proportional to exp(−γ /Θe)/
K2(1/Θe). This peaks at γ ∼ 1 + Θe for all Θe, so

npeak � (Θe + 1)(ν/νc)(1 − β2 cos2 θ ) (67)

is a good estimate for all Θe.
For ν � νcΘ2

e we can use the asymptotic expression for the
single electron emissivity to estimate npeak (see Section 5). The
peak is near the peak of the function exp[−γ /Θe − ν/(γ 2νc)],
so most of the emission comes from electrons with γ =
(2Θeν/νc)1/3.

Combining the low-frequency and high-frequency estimates
for npeak,

n+ = C

[
Θe + 1 +

(
2Θe

ν

νc

)1/3
]

ν

νc
(1 − β2 cos2 θ ). (68)

Typically C = 10 gives adequate accuracy.
For a nonthermal distribution we take an adaptive approach.

We sum over successive intervals [n−, n− + Δn], [n− + Δn +
1, 2(n− + Δn)], [2(n− + Δn) + 1, 4(n− + Δn)], etc., until the
fractional contribution from the last interval is smaller than a
preset tolerance. This procedure yields fast convergence except
for exotic electron distribution functions. Some knowledge of
the distribution is required, however, to set Δn.

5.4. Numerical Considerations

Accurate, efficient evaluation of the Bessel function Jn(z) for
n � 1 is essential for our calculation. When n is small, any
mathematical library gives an accurate, efficient result. As n
increases, however, standard mathematical libraries slow down,
become inaccurate, and fail. In our calculations, the argument z
and order n of the Bessel functions can be large and are typically
comparable in size (one can show that z/n < 1). Standard
asymptotic expansions (see Abramowitz & Stegun 1970) are
unsatisfactory because they typically assume z � n or vice
versa. We calculate Jn using a special-purpose code based on
asymptotic expansions discussed in Chishtie et al. (2005), who
divide the arguments into three regimes and provide asymptotic
expansions for each regime. Details of our scheme are discussed
in Appendix B.

The summation over n is done as an explicit sum at small
n and as an integral at large n. The same approach was
used by Takahara & Tsuruta (1982). Approximating the sum
as an integral at large n increases both speed and, in many
cases, accuracy. The breakpoint, nI , between summation and
integration is set heuristically. Typically, we use nI = 30 for the
parameters of interest to us.

We integrate using the GNU Scientific Library’s QAG inte-
grator, which is fast, robust, and publicly available. One subtlety
here is connected to the narrow extent of the γ integrand when
ν is large (this narrow extent permits one to use the method
of steepest descent in evaluating Equation (57)). If the domain
of integration is not set correctly then the integrator can fail
to resolve the peak and the emissivity, for example, will be
underestimated.

Finally, note that Equation (62) fails for θ = π/2 because
the δ function does not contain cos ξ and so cannot be used to
eliminate the cos ξ integral. But since jν(θ ) is a smooth function
of θ with a maximum at θ = π/2, we simply avoid evaluating
the emissivity at θ = π/2 by extrapolating from nearby θ . The
error is of the same order as a single integration because of the
zero slope around the peak. The only penalty is that the time
needed to find jν is doubled compared to the calculation at other
θ .

6. VERIFICATION OF CALCULATION

6.1. Monoenergetic Electrons

The angle-averaged synchrotron emissivity of ultrarelativistic
monoenergetic electrons is

j̄ν(ν, γ ) � ne

1

2

∫ 1

−1

√
3e3B sin θ

4πmec2
F

(
ν

νcr

)
d(cos θ ) ≡ neη̄ν.

(69)
The single-particle emissivity can be approximated as (Crusius
& Schlickeiser 1986, 1988; Schlickeiser & Lerche 2007)

η̄ν(ν, γ ) ≈ πe2ν

2
√

3cγ 2
CS

[
2ν

3νcγ 2

]
, (70)
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Figure 1. Upper panel: the angle-averaged single-particle emissivity η̄ν/B, in
cgs units, at β = 0.999. The solid line is the result of harmony, and the dashed
line is calculated by using the approximate Equation (70). Lower panel: the solid
line is the relative difference of Equation (70) and the result of harmony, and
the dotted line is the difference between Equation (70) and the ultrarelativistic
limit Equation (69).

Figure 2. Upper panel: the angle-averaged single-particle emissivity η̄ν/B, in
cgs units, at β = 0.86. The solid line is result of harmony, and the dashed line
is result of Wolfe & Melia (2006) multiplied by a factor of π2 (which we cannot
explain). Lower panel: the relative difference of η̄ν . The difference compared
to Wolfe & Melia (2006, their Figure 3) seems to be due to better resolution of
the cyclotron peaks in our calculation.

where the function CS(x) is given by

CS(x) = x−2/3

0.869 + x1/3 exp(x)
. (71)

We compute an approximation to the emissivity of a monoen-
ergetic distribution by using a narrow Gaussian in energy; for
small enough energy width ΔE the emissivity is independent of
ΔE. Figure 1 compares Equation (70) with the harmony result
and the ultrarelativistic limit Equation (69). At high frequency,
harmony underestimates the emissivity because the integrand
becomes too narrow to be resolved numerically. Evidently,
Equation (71) has a maximum error of order ≈20%.

Wolfe & Melia (2006) fit the angle-averaged single-particle
emissivity and provide a code that reproduces their fitting
function. Figure 2 compares results of harmony with their code,
with the same parameters as their Figure 3(c). The relative error
of their fitting formula, compared with our “exact” numerical

Figure 3. Upper panel: the absorption coefficients αQ in cm−1 at kTe =
10.0 keV, θ = 60◦. The solid lines are from harmony, whereas the circles
are data from Table 4 in Väth & Chanmugam (1995). Lower panel: relative
difference of the data from Väth & Chanmugam (1995) and harmony. There is
a trend of deviation from zero as ν increases. The trend is removed if harmony
is run at kTe = 9.998 keV. Similar trends are also seen in the plots of other
absorption coefficients in Väth & Chanmugam (1995). The maximum relative
difference is 0.2% if the last two data points are dropped.

calculation, is somewhat larger than the error shown in their
Figure 3(c), perhaps due to our better resolution of the cyclotron
peaks.

6.2. Thermal Distribution

At large ν and Θe, our emissivity agrees with the ultrarela-
tivistic limit; this is discussed in greater detail in Section 7.

At low ν and Θe, where cyclotron features are prominent, we
have compared our results with those in Väth & Chanmugam
(1995) and Chanmugam et al. (1989) and found good agreement.
Note that although the expressions presented in Chanmugam
et al. (1989) and Väth & Chanmugam (1995) allow for refractive
index �= 1, the deviation of the refractive index from 1 is small
in our test examples, so we expect good agreement.

First, we calculate the absorption coefficients in the Stokes
basis and compare with Väth & Chanmugam (1995). Figure 3
shows that αQ calculated with harmony is within 0.2% of
the results of Väth & Chanmugam (1995). αI and αV have
similar relative differences. We then calculate the absorption
coefficients in the mode basis. Figure 4 compares αO from
Chanmugam et al. (1989) with the results of harmony. Using the
cold plasma approximation of TX (Equation (30)) in harmony,
the relative differences of αO,X are �0.2% compared with the
results of Chanmugam et al. (1989).

As another check, at θ = π/2, we eliminate the γ integration
using the δ function. Since at θ = π/2 the β dependence of
the resonance condition is eliminated, we are left with a single
value for γ and a two-dimensional integral in cos ξ and n. This
integration gives the same result as the γ –n integration.

6.3. Angle-averaged Thermal Emission

Mahadevan et al. (1996) provide a fitting formula to calculate
the observer angle-averaged emissivity j̄ν for a thermal distri-
bution. Coefficients of the fitting formula are given for seven
temperatures between 7 × 108 K and 3.2 × 1010 K, and the frac-
tional errors are given for each temperature. Figure 5 compares
our calculation with the fitting formula at 3.2 × 1010 K. We find

7
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Figure 4. Upper panel: the absorption coefficients αO in cm−1 at kTe =
10.0 keV, and θ = 60◦. The solid lines are from harmony with cold plasma
TX in Equation (30), and the circles are data from Table 6B in Chanmugam
et al. (1989). Lower panel: the crosses are relative differences of the data from
Chanmugam et al. (1989) and harmony with cold plasma TX .

Figure 5. Upper panel: the angle-averaged thermal emissivity j̄ν/(neB) in cgs
units, at T = 3.2 × 1010 K, for harmony (solid line) and fitting formula in
Mahadevan et al. (1996) (dashed line). Lower panel: the relative difference of
j̄ν .

good agreement with their formula and reproduce their maxi-
mum error.

6.4. Nonthermal Electron Distribution

For a power-law distribution in the ultrarelativistic limit our
absorption and emission coefficients agree with Equations (58)
and (59). Figures 6 and 7 show the emission and absorption
coefficients for p = 3, γmin = 1, γmax = 1000, and θ = 60◦.
For γ 2

min � ν/νc � γ 2
max the relative errors in Equations (58)

and (59) approach 10−3, while the errors diverge for smaller and
larger ν/νc.

Our code can also handle an electron distribution with pitch-
angle dependence. One example is the anisotropic nonthermal
emission calculated in Fleishman & Melnikov (2003). We
reproduce their Figure 1 in our Figure 8. We do not have the
Fleishman & Melnikov data, so we cannot make a quantitative
comparison, but a comparison by eye suggests that our results
reproduce theirs quite well.

Figure 6. Upper panel: the emissivity jν/(neB), in cgs units, for p = 3, γmin = 1,
γmax = 1000, and θ = 60◦. The solid line is the result of harmony, and the
dashed line is calculated by using Equation (58). Lower panel: the relative
difference of jν . The error is smallest for γ 2

min � ν/νc � γ 2
max. At smaller and

larger frequencies, the error diverges.

Figure 7. Upper panel: the absorption coefficient ανB/ne , in cgs units, for p =
3, γmin = 1, γmax = 1000, and θ = 60◦. The solid line is the result of harmony,
and the dashed line is calculated by using Equation (59). Lower panel: the
relative difference of jν . The error is smallest for γ 2

min � ν/νc � γ 2
max. At

smaller and larger frequencies, the error diverges.

7. APPROXIMATE EQUATION

Motivated by the above discussion, and by the ultrarelativistic
limit discussed above, we introduce the following approximate
expression for the thermal MBS emissivity:

jν = ne

√
2πe2νs

3K2(1/Θe)c
(X1/2 + 211/12X1/6)2 exp(−X1/3). (72)

Equation (72) combines Equation (26) of Petrosian (1981) and
Equation (55). All three equations are shown in Figure 9, which
shows that Equation (72) is accurate over a much larger range
of frequency.

Figures 10 and 11 are contour plots of the accuracy of
Equation (72) over a wide range of Θe and frequencies for
θ = 30◦ and θ = 80◦, respectively. These plots verify that our
scheme accurately reproduces the high-frequency limit given by
Equation (57), which coincides with Equation (72). As a crude
guide to the regime of validity of Equation (72), we estimate that
the error becomes of order unity for Θe � (ν/(νc sin θ ))−1/5.
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Figure 8. Reproduction of Figure 1 in Fleishman & Melnikov (2003). IX/(ν/νc)3, IO (ν/νc)3, and degree of polarization are plotted as functions of frequency. Intensity
IA is defined as jA/αA, where A is O (ordinary mode) or X (extraordinary mode). Degree of polarization is defined as (IX − IO )/(IX + IO ). The panels on the left
(right) are calculated with assumption that cos θ = 0.8(0.2). In both cases, νp/νc = 0.4 and the exponent of the momentum power-law distribution is 5. Cold plasma
approximation of TX is used in the calculation using harmony.

(A color version of this figure is available in the online journal.)

Figure 9. Upper panel: the emissivity jν/(neB), in cgs units, for Θe = 10, θ =
60◦. The solid line is the result of harmony. The dashed line shows Equation (26)
of Petrosian (1981), and the dotted line shows Equation (55). The dot-dashed
line (which overlaps the solid line) shows the combined Equation (72). Lower
panel: the relative difference of the approximate equations.

8. SUMMARY

We have described and verified an accurate, efficient scheme
for evaluating MBS emission and absorption coefficients for
polarized emission for an arbitrary electron distribution func-
tion. The relationship between the coefficients in the Stokes,
Cartesian polarization, and mode polarization bases is given in
Section 2.

Figure 10. Logarithm of the relative error of the approximated equation (72)
of emissivity jν , at θ = 30◦. The dotted lines are contours of negative integers,
and the solid lines are zero and positive integers up to 10. The lower right corner
is ignored since the emissivity is too low (cutoff = 1 × 10−250 [cgs]).

For each coefficient we must evaluate a two-dimensional
integral of the form in Equation (62). We use a publicly available
numerical integration method. The integrand depends on Bessel
functions of the first kind of high-order n, so along the way we
have developed an efficient method for evaluating high-order
Bessel functions. This method is described in Appendix B.

We have used the numerical results to evaluate the accuracy
of several approximate analytic expressions that appear in the
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Figure 11. Logarithm of the relative error of the approximated equation (72) of
emissivity jν , at θ = 80◦. The dotted lines are contours of negative integers, and
the solid lines are zero and positive integers up to 10. The lower-right corner is
ignored since the emissivity is too low (cutoff = 1 × 10−250 [cgs]).

literature, and we have also verified earlier numerical work (e.g.,
Petrosian 1981; Robinson & Melrose 1984; Mahadevan et al.
1996).

Our code, called harmony, is available at http://rainman.astro.
illinois.edu/codelib/.
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APPENDIX A

ADDITIONAL DOPPLER FACTOR IN EMISSIVITY

There is some confusion in the literature about the expres-
sion for the single-electron emissivity, which can be calculated
directly from Maxwell’s equations (see Bekefi 1966). This con-
fusion is connected to discussions of the distinction between re-
ceived and emitted power first noted by Ginzburg & Syrovatskii
(1968) and by Pacholczyk (1970), and discussed by Scheuer
(1968), Rybicki & Lightman (1979, Section 6.7), and very
clearly by Blumenthal & Gould (1970, Sections 4.3 and 4.4). So,
for example, Wardzinski & Zdziarski (2000, Section 2.1) state
that an additional Doppler factor (1 − βμ cos θ )−1 should have
appeared in their expression for the single-electron emissivity
ην (see their Equation (1)), but that this factor “disappears in
the case of an electron moving chaotically.” Here we show that
there is no such factor.

To find the emissivity for a distribution of electrons we need to
integrate the single-electron emissivity against the distribution
function over momentum space:

jν =
∫

d3pe

dNe

d3ped3x
ην(pe), (A1)

where pe is the electron momentum. To evaluate jν , we need
ην for an electron with nonzero momentum parallel to B,

measured in the plasma rest frame. This can be calculated
directly (see, e.g., Bekefi 1966). Here we start with the single-
electron emissivity for an electron with zero momentum parallel
to B and show explicitly that, by Lorentz boosts, one obtains
the usual expression for the single-electron emissivity for an
electron with nonzero momentum parallel to B. The emissivity
of a distribution of electrons in frames other than the fluid
(plasma center of momentum) frame can then be obtained using
the Lorentz invariance of jν/ν

2.
Here is our strategy: identify the wavevector and electron

four-momentum in the fluid frame (denoted [FF]), then trans-
form these to a frame comoving with the electron’s guiding
center (denoted [GCF], and also denoted by primes), and use
the resulting expressions for the photon wavevector and electron
four-velocity to obtain ην in the guiding center frame. Finally,
transform ην back to the fluid frame.

The photon wavevector is (ω = 2πν)

kμ[FF] = {ω,ω sin θ, 0, ω cos θ} (A2)

in a coordinate frame t, x, y, z. We assume, without loss of
generality, that the wavevector lies in the x–z plane and the
magnetic field is aligned with ẑ. The electron four-velocity is

uμ[FF] = {γ, γβ sin ξ, 0, γβ cos ξ} (A3)

where ξ is the electron pitch angle. As the time-averaged
emission is invariant under rotations about ẑ, we have chosen
an instant of time at which the electron’s velocity is (spatially)
coplanar with kμ and the magnetic field.

Now we apply a Lorentz boost parallel to the magnetic field,
transforming into the frame comoving with the electron guiding
center:

Λ =

⎛
⎜⎝

γg 0 0 −βgγg

0 1 0 0
0 0 1 0

−βgγg 0 0 γg

⎞
⎟⎠ , (A4)

where βg is the guiding center speed along the field line, which is
β cos ξ ; the corresponding Lorentz factor is γ −2

g = 1−β2 cos2 ξ .
The boosted wavevector is

kμ[GCF] = ω{γg(1−βg cos θ ), sin θ, 0, γg(cos θ −βg)} (A5)

from which we deduce that

ν ′ = νγg(1 − βg cos θ ) (A6)

(the prime denotes the value in the [GCF]) and

sin θ ′ = sin θ

γg(1 − β cos ξ cos θ )
(A7)

and

cot2 θ ′ = γ 2
g

(
β cos ξ − cos θ

sin θ

)2

. (A8)

The boosted four-velocity is

uμ[GCF] = γ {γg(1 − ββg cos ξ ), β sin ξ, 0, 0} (A9)

from which we conclude that

γ ′ = γ

γg

(A10)
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and
β ′ = βγg sin ξ. (A11)

In the guiding center frame the single-electron emissivity is
(Schott 1912)

ην[GCF] ≡ dE′

dt ′dΩ′dν ′

= 2πe2ν ′2

c

∞∑
n=1

δ(y ′
n)

[
cot2 θ ′J 2

n (z) + β2J ′2
n (z)

]
(A12)

where
y ′

n ≡ nνc

γ ′ − ν ′, (A13)

z = ν ′β ′γ ′

νc
sin θ ′, (A14)

and dΩ′ is the differential solid angle in [GCF].
We can evaluate all the arguments of ην[GCF] in terms of

[FF]quantities:

y ′
n = nνc

γ ′ − ν ′ = γg

(
nνc

γ
− ν(1 − β cos ξ cos θ )

)
= γgyn,

(A15)
since the field strength (and therefore νc) is the same in both
frames and yn is defined in Equation (16). Now,

δ(y ′
n) = δ(γgyn) = 1

γg

δ(yn). (A16)

Also (after substitution),

z = ν ′β ′γ ′

νc
sin θ ′ = νβγ

νc
sin θ sin ξ, (A17)

which recovers Equation (17). We have evaluated ην[GCF] in
terms of quantities measured in the fluid frame:

ην[GCF] = 2πe2ν ′2

c

∞∑
n=1

1

γg

δ(yn)

[
γ 2

g

(
cos θ − β cos ξ

sin θ

)2

J 2
n (z)

+ β2 sin2 ξγ 2
g J ′2

n (z)

]
; (A18)

and we now need to find ην[FF].
Since

ην = dE

dtdΩdν
= hν2 dN

νdtdΩdν
, (A19)

and νdΩdν and dN are invariant, then

η′
ν

ν ′2 dt ′ = ην

ν2
dt. (A20)

Since dt ′/dt = 1/γg (exercise for the reader), we are left with

ην[FF] = 2πe2ν2

c

∞∑
n=1

δ(y ′
n)

[(
cos θ − β cos ξ

sin θ

)2

J 2
n (z)

+ β2 sin2 ξJ ′2
n (z)

]
, (A21)

which is the usual expression, as given by Wardzinski &
Zdziarski (2000) and Bekefi (1966), obtained by transformation
rather than direct calculation.

APPENDIX B

EFFICIENT BESSEL FUNCTION CALCULATOR

In order to evaluate the accuracy of approximate formulae
for the synchrotron emissivity we must compare them to the
exact expression (31), which includes the Bessel function of the
first kind Jn(z) (Abramowitz & Stegun 1970). The function is a
solution of the differential equation[

z2 d2

dz2
+ z

d

dz
+ (z2 − n2)

]
Jn = 0 (B1)

and has the series representation

Jn(z) =
( z

2

)n
∞∑

k=0

(−1)k (z/2)2k

k! Γ(n + k + 1)
. (B2)

In our application, the order of the Bessel function is set by
the resonance condition (16). Both z and n vary from 102 to
∼1013 for our target application (Noble et al. 2007). Since our
evaluation of jν(θ ) requires us to evaluate a two-dimensional
integral repeatedly, many evaluations of Jn(z) are required.
Further, the number of Jn(z) calculations needed for the two-
dimensional integral and the run-time per Jn(z) evaluation using
standard packages increases with ν/νc. This study therefore
demanded we use an efficient Jn(z) calculator accurate enough
so that the final error in jν(θ ) is less than the error of our
approximate expressions.

Facing the same computational hurdle as us, Chishtie et al.
(2005)—who require large order calculations of Jn(z) to high
precision for Fourier transforming gravitational wave signals
from pulsars—expanded further previously known approximate
expansions for Jn(z) in various limits. We demonstrate here for
the first time that these expressions can be pieced together to
form a continuous approximation for Jn(z) up to n ∼ 1055. We
do not use the more recent method described in Chishtie et al.
(2008)—which is said to work over all limits in z/n—since
it requires evaluating the Airy function and its derivative.
The expressions given in Chishtie et al. (2005) satisfy our
needs, were straightforward to implement, and relieved us from
searching for a robust, efficient Airy function routine.

Our method uses three different approximate expansions,
which we will call “Expansions 1–3,” for three different do-
mains: z < n−d1, z ∼ n, and z > n+d2, where d1,2 are functions
of n given below. Expansions 1 and 3 use two-order extensions
made by Chishtie et al. (2005) to expansions derived originally
by Meissel (see Chishtie et al. 2005 for references to original
works on the various series representations of Jn(z)). Specifi-
cally, we use Equations (10)–(12) of Chishtie et al. (2005) for
Expansion 1, and Equations (12)–(14) of Chishtie et al. (2005)
for Expansion 3. Expansion 2 is used in the so-called transi-
tion region, z ∼ n, and is a five-term extension of Debye’s “ε
expansion” given in Equations (21) and (22) of Chishtie et al.
(2005).

The extensions made by Chishtie et al. (2005) were essential
for being able to match the expansions together for all n.
We empirically found the locations—i.e., z(n)—at which an
expansion starts to deviate by more than 0.1% from trusted
values5 over 100 < n < 107. These locations z(n) fit the

5 The routine used to calculate the trusted values was the jn routine found in
the GNU C compiler’s math library (GNU Compiler Collection,
http://gcc.gnu.org/).
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Table 1
Routines for Evaluating the Bessel Function Jn(z)

Name Reference nmax
a

my_Bessel_J This paper (Chishtie et al. 2005) · · ·
bessjy Press et al. (1992) 1016

gsl_sf_bessel_Jn Galassi et al. (2006) 105

jn GNU Compiler Collection 109

s17dec NAG C Libraryb 109

Notes.
a nmax is the approximate maximum value of n a routine can calculate Jn(n) to
within 10% of the value from my_Bessel_J.
b The NAG C Library Mark 8, http://www.nag.co.uk/

following functions well:

z− = n(1 − b−na− ) for z < n (B3)

and
z+ = n(1 − b+n

a+ )−1 for z > n, (B4)

with a± and b± being different constants for each expansion.
We found that each expansion’s region of validity (to the 0.1%
level) overlaps with another expansion’s valid range, suggesting
that at least one out of the three expansions is valid for any n, z.
The boundaries dictating which expansion to use were finally
chosen to be curves centered between neighboring methods’
curves of validity. The curve marking the boundary between the
first and second domains is

z12 = z− : (a−, b−) � (−0.66563, 1.8044) (B5)

and the curve separating the second and third domains is

z23 = z+ : (a+, b+) � (−0.65430, 1.8708). (B6)

One can show that, with 32 bit double-precision floating-point
arithmetic, these curves are numerically indistinguishable from
the curve z = n for n � 1023; at these orders Expansion 2 is
used only when z = n. For n � 1026, Jn(z < n) is numerically
equivalent to zero for any z numerically different from n since
the function Jn(z < n) becomes narrower as n increases. One
may, however, resolve this issue by working in higher precision
environments. Fortunately, our applications do not require us to
do so since we are only interested in n < 1014.

We have written a routine in the C programming language
called my_Bessel_J that controls when to use which expansion
and efficiently evaluates the appropriate expansion.6 It has been
extensively tested against a number of other routines, which we
list in Table 1. All tests were performed on an Intel 3.06 GHz
Xeon machine with the Intel C++ Compiler for Linux version
8.0 and the GNU C Compiler version 3.3.2.

Our first comparison attempts to measure the maximum value
of n for which a routine can reliably calculate the Bessel
function. In Table 1, we list the order of magnitude of n at which
each method’s evaluation of Jn(n) begins to significantly deviate
from our method’s values. For small orders we are confident
in our method since all methods agree with each other. At
orders n > 109, however, only one other method is reliable
(bessjy) and so the comparison is biased. At their limits, each
method “fails” to return with a reasonable answer in different

6 Our routine and an example program are available to the public under the
GNU Public License from the Web site at
http://rainman.astro.illinois.edu/codelib/.

Figure 12. Logarithm of the time per Jn(n) execution in seconds vs. n using the
methods listed in Table 1. A method’s execution time was only measured up to
its nmax. Note that the execution time of my_Bessel_J remains steady through
n = 1055; the plot was truncated for illustrative purposes.

(A color version of this figure is available in the online journal.)

ways. Some return with obviously wrong values like Jn(n) < 0
(gsl_sf_bessel_Jn and jn), another reports that there is a
loss of precision and returns with a null answer (s17dec), while
the last reports that the calculation requires too many iterations
and gives an inaccurate approximation (bessjy). Note that we
are not confident in our method for n > 1055 since this is when
Expansion 2 evaluates Jn(n) = 0.

This survey shows that there is an existing method, bessjy,
that can reliably calculate Jn(n) at orders well above our
requirements. Unfortunately, as we see in Figure 12, it is
costly and scales as a power law with n. jn has a steeper
power-law scaling, while the others are practically independent
of the Bessel function’s order.7 All but gsl_sf_bessel_Jn
are significantly slower than our routine; gsl_sf_bessel_Jn,
however, has the smallest domain of validity and cannot evaluate
Jn(z) at the values of n we need.

In Figure 13, we compare Jn(z) at n = 109 to see how the
three best methods compare with each other at large orders
over a wide range in argument. The fact that my_Bessel_J
agrees better with s17dec than does bessjy gives credence
to our method. The imperfectness of the transitions from one
expansion to another exhibits itself by narrow peaks in the
relative error between my_Bessel_J and the other methods.
These peaks lie immediately about the transition points, which
are indicated by the dashed vertical lines. As z increases past n,
round-off errors lead to significant phase errors. my_Bessel_J
and s17dec both follow the asymptotically sinusoidal trend at
large z, but bessjy eventually returns with 0 and indicates that
it has reached its reliable limit.

To measure the accuracy at even larger orders, we employ the
recurrence relation

2n

z
Jn(z) = Jn−1(z) − Jn+1(z) (B7)

and calculate the normalized deviation from it:

Rn(z) =
∣∣∣∣ 1

Jn(z)

(
2n

z
Jn(z) − Jn−1(z) − Jn+1(z)

)∣∣∣∣ , (B8)

7 The runtime for s17dec is constant up to n ∼ 104, after which it is a larger
constant.
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Figure 13. Comparison between Jn(z) evaluations when n = 109. Top row: Jn(z) using my_Bessel_J (circles), bessjy (triangles), and s17dec (x’s). Bottom row:
the logarithm of the relative error between my_Bessel_J and bessjy (circles), my_Bessel_J and s17dec (triangles), and bessjy and s17dec (x’s). The plots on
the left are shown for z < n, while those on the right are shown for z > n. The vertical dashed lines in the left and right plots indicate, respectively, z− and z+ at
n = 109.

(A color version of this figure is available in the online journal.)

Figure 14. Logarithm of the normalized residual of the recurrence relation
for z = (1 − ε) z− (solid curve), z = n (squares), and z = (1 + ε) z+
(dashes), which—respectively—use expansions 1–3, where ε = 10−13. Please
see Equation (B8) for the definition of Rn(z).

(A color version of this figure is available in the online journal.)

which should be identically zero. We calculate Rn(z) for three
different arguments over a wide range of n in Figure 14. Each
curve uses one of the three expansions. The errors in Expansions
1 and 3 both diminish with n, except when round-off errors
lead to significant phase errors in Expansion 3 for n � 108.

Expansion 2, however, always satisfies the recurrence relation
to within 32 bit double precision for all n. For even higher orders
n → 1055, we have made sure that my_Bessel_J satisfies the
well-known upper bounds (Abramowitz & Stegun 1970):

Jn(n) <
[2/(9n)]1/3

Γ(2/3)
, |Jn(z)| � (z/2)n

Γ(n + 1)
, and

|Jn(nε)| �
∣∣∣∣∣ε

n exp [n
√

1 − ε2]

(1 +
√

1 − ε2)n

∣∣∣∣∣ . (B9)
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