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ABSTRACT

Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are
widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed
with HARM3D. The models span a factor of four in linear resolution, from 96 × 96 × 64 to 384 × 384 × 256.
We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma β; (2)
the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron
emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution
run, nearly independent of resolution; shell-averaged plasma β decreases steadily with resolution but shows signs
of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily
with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field
decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should
be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run,
nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution
local model (“shearing box”) calculations and with the recent non-relativistic global convergence studies of Hawley
et al.
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1. INTRODUCTION

The numerical study of black hole accretion flows has ad-
vanced significantly in the last decade. The advent of techniques
for numerically solving the equations of general relativistic
magnetohydrodynamics (GRMHD) has enabled self-consistent
global modeling of accretion driven by the magnetorotational
instability (MRI; Balbus & Hawley 1991; Gammie 2004) onto
rotating black holes. Qualitative aspects of these simulations are
code independent (e.g., De Villiers & Hawley 2003; Gammie
et al. 2003; Anninos et al. 2005), but quantitative variations
raise the question of numerical convergence. Recent work has
shifted focus from dynamical properties of the accretion flow
to simulated observations that can potentially constrain param-
eters for particular sources such as Sgr A* (Dolence et al. 2009;
Mościbrodzka et al. 2009; Dexter et al. 2009, 2010), includ-
ing polarized radiative transfer (Shcherbakov et al. 2010). To
assess the credibility of these radiative models, it is necessary
to assess quantitative convergence of the underlying GRMHD
simulations.

Convergence studies of global accretion models are com-
putationally expensive. An alternative is to use a local model
with shearing box boundary conditions to study the dynamics
of MRI-driven turbulence. These are simpler in the sense that
there are fewer free parameters, and cheaper in that numerical
resolution can be focused on a few correlation volumes ∼H 3,
where H is the disk scale height. The local model has for decades
been a key theoretical tool for probing astrophysical disks (e.g.,

4 Current address: Department of Astrophysical Sciences, Princeton
University, Princeton, NJ 08544, USA.

Goldreich & Lynden-Bell 1965; Goldreich & Tremaine 1978;
Narayan et al. 1987) coupled to the shearing box boundary con-
ditions and has been widely used for the study of magnetized
disks (e.g., Hawley & Balbus 1991, 1992; Hawley et al. 1995,
1996; Stone et al. 1996; Sano et al. 2004; Hirose et al. 2006;
Fromang & Papaloizou 2007; Fromang et al. 2007; Guan et al.
2009; Davis et al. 2010; Fromang 2010; Guan & Gammie 2011;
Simon et al. 2011).

Shearing box models have been integrated (1) with or without
a mean magnetic field; (2) with or without stratification; (3) with
or without explicit dissipation; and (4) with or without explicit
treatment of energy transport. There are now dozens of shearing
box studies that treat aspects of this problem. The only models
that clearly do not converge are unstratified, zero-net field
models without explicit dissipation (Fromang & Papaloizou
2007). These models have a magnetic field correlation length
that decreases proportional to the grid scale (Guan et al. 2009).
But with explicit dissipation (Lesur & Longaretti 2007; Fromang
2010), a mean field (Hawley et al. 1995; Guan et al. 2009),
or stratification (Davis et al. 2010; Simon et al. 2011), the
models do converge. One of the best resolved studies is Davis
et al. (2010), who convincingly demonstrate convergence of
a stratified, isothermal, zero explicit dissipation model with
the athena code at a physical resolution of up to 128 zones
per scale height H. These stratified local models are physically
closest to global simulations (e.g., Hirose et al. 2004), which are
dominated by toroidal magnetic field. Local studies have shown,
therefore, that with sufficient resolution numerical studies of
MRI-driven turbulence can converge.

Local models can focus on a few H3, while global simulations
must contain many H3. Are any of the dozen or so global disk
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models (e.g., Brandenburg 1996; Matsumoto et al. 1996; De
Villiers & Hawley 2003; Gammie et al. 2003, 2004; De Villiers
et al. 2003; McKinney & Gammie 2004; McKinney 2006;
Fragile et al. 2007, 2009; Beckwith et al. 2008, 2009, 2011;
Shafee et al. 2008; Fragile & Meier 2009; Noble et al. 2009,
2010; Penna et al. 2010; Flock et al. 2011; Hawley et al. 2011,
and many others) converged? And are synthetic observations
based on global models (e.g., Dexter & Fragile 2011; Hilburn
et al. 2010; Mościbrodzka et al. 2009; Dexter et al. 2009; Noble
et al. 2007; Schnittman et al. 2006; J. C. Dolence et al. 2011, in
preparation) sensitive to resolution? While some authors have
included limited resolution studies (e.g., Shafee et al. 2008;
Noble et al. 2010; Penna et al. 2010), the answer is not yet clear.

The first systematic convergence test of a global black hole
accretion simulation was done by Hawley et al. (2011, hereafter
HGK), using a zeus type code to simulate an H/R ≈ 0.1 disk
in a pseudo-Newtonian potential. HGK simulate a π/2 wedge
in azimuth, varying resolution around a fiducial 256 × 288 × 64
(r, z, φ in cylindrical coordinates). After reviewing local model
simulations and global non-relativistic models, HGK find that a
minimum of 10 cells per vertical characteristic MRI wavelength
is required for convergence (HGK’s Qz; e.g., Sano et al. 2004),
and 20 cells per azimuthal MRI wavelength (HGK’s Qφ). They
conclude that most global simulations to date are far from
resolved, except Noble et al. (2010) which used barely adequate
poloidal resolution.

In this paper we study the same convergence problem consid-
ered by HGK, but (1) in relativistic MHD and (2) using slightly
different diagnostics. We ask what resolution is required for con-
vergence (if convergence can be achieved), and how the global
resolution requirements are related to local models. We are also
particularly interested in whether resolution influences the spec-
tra calculated from the models in the weakly radiative limit. This
requires a fully relativistic simulation since in weakly radiative
accretion flows much of the emission arises from plasma near
or even inside the innermost stable circular orbit (ISCO) of a
spinning black hole. At these radii, the relativistic models incor-
porate the dynamics of the plunging region and strong lensing
effects on the radiation field.

A third contrast with HGK is that we simulate a full 2π in
azimuth rather than π/2. Our experience suggests that there
is structure in the disk in all azimuthal Fourier components,
with the most power in the m = 1 component. Models with
small azimuthal extent have reduced field strength and therefore
require higher physical resolution by the HGK Q criteria.

We proceed as follows. Section 2 describes the code and ini-
tial and boundary conditions. Section 3 describes convergence
of radial profiles of non-dimensional variables. Section 4 de-
scribes convergence of azimuthal correlation lengths. Section 5
describes convergence of simulated spectra calculated with a
Monte Carlo code. Section 6 gives a brief summary.

2. SIMULATIONS

Throughout the paper, we follow the standard notation of
Misner et al. (1973) and set GM = c = 1. We consider a test
fluid (no self-gravity) in the Kerr metric with dimensionless
spin a∗ = 1 − 2−4 ≈ 0.94. The governing GRMHD equations
express conservation of particle number

(ρuμ);μ = 0, (1)

and conservation of energy-momentum

T μ
ν;μ = 0, (2)

together with the source-free Maxwell equations

∗Fμν ;ν = 0, (3)

where uμ, ρ, T μν , and ∗Fμν are the fluid’s four-velocity, rest-
mass density, GRMHD stress-energy tensor, and dual of the
electromagnetic field (EMF) tensor, respectively. The equation
of state is

p = (γ − 1)u, (4)

where γ = 13/9, appropriate for a collisionless plasma with
relativistic electrons and non-relativistic protons.

We evolve the GRMHD equations using the HARM3D code
(Noble et al. 2006, 2009; Gammie et al. 2003). HARM3D is a con-
servative high-resolution shock-capturing scheme demonstrated
to have second-order convergence in space and time for smooth
flows. The zone-centered magnetic field is updated with flux-
interpolated constrained transport (flux-ct: Gammie et al. 2003;
Tóth 2000) which preserves a particular numerical representa-
tion of ∇ · B = 0. For this study, we use piecewise parabolic
interpolation for both fluxes and EMFs.

The numerical grid is uniform in modified Kerr–Schild
coordinates x1, x2, and x3 (Gammie et al. 2003):

x1 = ln r (5)

θ = πx2 + h sin(2πx2) (6)

x3 = φ, (7)

where r, θ , and φ are the Kerr–Schild radius, colatitude, and
azimuth, respectively. We set h = 0.35 to concentrate the grid
near the equatorial plane. The grid extends from below the
horizon to r = 40, [0.017π , 0.983π ] in colatitude, and [0, 2π )
in azimuth. HARM3D sets a “floor” for density and internal energy
to avoid numerical problems that arise when those values are
low: ρmin = 10−4r−3/2 and umin = 10−6r−5/2.

The initial condition is an equilibrium, prograde torus
(Fishbone & Moncrief 1976) with inner edge at r = 6, pres-
sure maximum at 12, and outer edge at 40. To make the torus
unstable to MRI, it is seeded with weak poloidal magnetic field
whose vector potential is

Aφ =
{

C(ρ/ρmax − 0.2) if Aφ > 0

0 if Aφ � 0,
(8)

where C is a constant and ρmax is the maximum initial density.
This gives dipole field line loops that run parallel to density
contours. The field strength is normalized so that the ratio of
the maximum gas pressure to the maximum magnetic pressure
β is 100. Small perturbations are introduced into the initial
conditions to seed the MRI. The density and magnetic field
lines are shown in Figure 1 for the initial conditions and for a
later snapshot of the turbulent accretion flow.

The models have outflow boundary conditions at the inner and
outer radial (x1) boundaries and periodic boundary conditions in
the azimuthal (x3) direction. The remaining (x2) boundaries are
offset slightly from the pole, so the grid excludes a narrow cone
around each pole. This avoids having the last polar zone control
the timestep via the Courant condition because the polar zones
become narrow in x3 (the computational expense is proportional
to N5

x if poles are included). While this treatment is essential for
a convergence study, it is difficult to implement an appropriate
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Figure 1. Poloidal slices of the initial and turbulent states of the global simulation. The pseudo-color is showing scaled logarithmic density and black lines are the
initial magnetic field lines.

(A color version of this figure is available in the online journal.)

boundary condition on the cone. We consider two different
polar-boundary conditions.

The first, “hard” boundary is a solid reflective wall. We
manually set the flux through the boundary to zero, and adjust the
EMF in the flux-ct routine to make the cutout completely opaque
to the magnetic field, since the field vectors are modified in
the routine after setting the boundary condition. This boundary
condition produces an unphysical relativistic flow in the grids
along the polar cone, so in addition we force the poloidal velocity
in the zones along the boundary to be zero.

The second, “soft” boundary also models a reflective wall.
The variables in the ghost zones are all copied from the first
physical zone. The x2 components of the velocity and magnetic
field are inverted across the boundary (as usual for reflecting
boundaries), but this only zeros fluxes on the boundary to
within truncation error. This version of the polar-boundary
condition permits some leakage of magnetic flux through the
polar boundaries, but does not produce unphysical flows along
the boundary.

We ran a low-resolution simulation with no polar cutout to
evaluate both boundary conditions. The results suggest that
the difference between the boundary conditions does affect the
evolution of the high latitude “funnel” region. The soft boundary
condition, in particular, causes a steady drop in the funnel region
magnetic flux. On the other hand, all three cases (hard, soft, and
no cutout) exhibit remarkably similar disk evolution.

Our runs have numerical resolutions (Nx1 , Nx2 , Nx3 ) = (96,
96, 64), (144, 144, 96), (192, 192, 128), and (384, 384, 256).
The runs last until tf = 16,000 for 96 × 96 × 64, 12,000
for 144 × 144 × 96, 10,000 for 192 × 192 × 128, and 6000 for
384×384×256. Each resolution is run for both the soft and hard
polar-boundary conditions except the highest resolution case
which is run only for the soft polar boundary due to numerical

Table 1
List of Runs

Resolution Duration ( GMBH
c3 ) Polar Boundary Type

96 × 96 × 64 16,000 Soft
144 × 144 × 96 12,000 Soft
192 × 192 × 128 10,000 Soft
384 × 384 × 256 6,000 Soft
96 × 96 × 64 16,000 Hard
144 × 144 × 96 12,000 Hard
192 × 192 × 128 10,000 Hard

expense. A list of runs is shown in Table 1. The runs required
≈106(Nx1/384)4(tf /6000) cpu hours on TACC ranger.

Each simulation’s initial data contain noise inserted in each
zone with a random number generator. This noise seeds the
growth of instabilities in the torus. Each run will therefore differ
in the details of the evolution, but over long enough periods one
expects the differences to average away. Nevertheless, because
our runs have finite duration, we expect some “cosmic variance,”
and this noise from run-to-run variations is present in every
measurement we use to evaluate convergence.

To evaluate run-to-run variation, we have repeated each of the
Nx1 = 96 and Nx1 = 144 runs three times, and have used the
variance of these runs to attach error bars to our measurements.
We find that large run-to-run variations are caused by “events”
that last a non-negligible fraction of the simulation time. For
example, the lowest resolution runs sometimes gather a large
mass of plasma near the ISCO, then dump it suddenly into
the black hole. We have also observed a bundle of magnetic
field directed opposite to the field in the funnel merged into the
funnel, leading to a large fluctuation in the run with resolution
144 × 144 × 96 and hard polar boundary. While the nature,
frequency, and origin of these events are still unclear (we have

3



The Astrophysical Journal, 744:187 (11pp), 2012 January 10 Shiokawa et al.

only a handful of runs), it appears that run-to-run variation
decreases at higher resolution.

3. RADIAL PROFILES OF NON-DIMENSIONAL
VARIABLES

We will compare poloidally, azimuthally, and time-averaged
radial profiles of the flow variables for the different resolution
runs. We take a density-weighted average to focus on the
accretion flow within ∼ H of the equatorial plane. The explicit
expression for the averaged radial profile F (x1) for a variable f
is

F (x1) =
∫ t2
t1

f̄ (t, x1)dt

t2 − t1
, (9)

where

f̄ (t, x1) =
∫ (x2)2

(x2)1

∫ (x3)2

(x3)1

√−gρ(t, �x)f (t, �x)dx2dx3∫ (x2)2

(x2)1

∫ (x3)2

(x3)1

√−gρ(t, �x)dx2dx3

(10)

is the density-weighted poloidally and azimuthally averaged
radial profile of the variable f and g = g(�x) is the determinant
of the metric. For our case, ((x2)1, (x2)2) = (0.01, 0.99) and
((x3)1, (x3)2) = (0, 2π ).

We compare only non-dimensional variables since dimen-
sional variables depend on the accretion rate, which decreases
in time as the initial torus is accreted by the black hole. Our
choice of the non-dimensional variables is scaled electron tem-
perature θe = kTe/me (= mppg/(2meρ) if Te = Tp) and
β ≡ pg/pB = (Γ − 1)u/(b2/2), where b2 ≡ bμbμ,

bμ ≡ 1

γ
(gμ

ν + uμuν)Bν (11)

Bμ ≡ −nν
∗Fμν where nμ = (−

√
−1/gtt , 0, 0, 0) , (12)

γ is the Lorentz factor of the flow measured in the normal ob-
server’s frame, and Γ, k, mp and me, and Tp and Te are the
adiabatic index, Boltzmann constant, proton and electron mass,
and proton and electron temperature, respectively. When calcu-
lating β we average pg and pb separately using Equation (10)
and take the ratio of the averages. This prevents zones with
near-zero magnetic energy from dominating the average.

Figure 2 shows the radial profile of β and θe calculated using
Equation (9) for all the runs. All time averages run from t =
4000 to the end of the run; at t = 4000 the disk at r � 10 is in a
steady state for all runs except for the lowest resolution model,
which shows a clear upward trend in β over the entire run. The
lowest (96 × 96 × 64) and medium (144 × 144 × 96) resolution
runs are averaged over three runs with different initial seeds to
reduce run-to-run variation. The figure shows profiles for both
the hard and the soft polar-boundary conditions described in
Section 2.

Figure 3 shows β and θe plotted against radial resolution Nx1

for r = 2.04 (ISCO) and 8. The soft and hard polar-boundary
results are shown as solid black and red lines, respectively.
Most quantities vary sharply from Nx1 = 96 to 144 and
then far less at higher resolution. For example, the soft polar-
boundary models have β(ISCO) = (11.6, 7.3, 7.8, 6.6) and
θe(ISCO) = (31, 47, 48, 57) at the four resolutions.

Note that at resolutions greater than 144 × 144 × 96 there
are only small quantitative differences between the hard and
soft polar-boundary conditions, as seen in Figures 2 and 3.

We conclude that the effect of the polar-boundary conditions
on the main, equatorial flow is small for these dimensionless
variables.

What part of the variations at Nx1 � 144 is real variation with
resolution, and what part is run-to-run noise? The error bars in
Figure 3 show standard deviation of the three runs performed for
the lowest (96 × 96 × 64) and medium (144 × 144 × 96) data
points with different initial seeds. Error bars are not available for
the higher resolution data points due to computational expense.
The size of the error bars is comparable to the differences
between models run with different resolution. One might hope
to gain additional information by measuring, e.g., β at several
radii and averaging the trend with resolution, but, interestingly,
the entire radial profile varies in a correlated way. Nevertheless,
Figures 2 and 3 show a clear trend of decreasing β and θe with
increasing resolution. It seems likely, therefore, that there is a
genuine but weak trend with resolution.

4. CORRELATION LENGTHS

We have looked at one-point statistics for non-dimensional
variables. What about two-point statistics, which measure the
spatial structure of the turbulence, and in particular the corre-
lation length? The correlation length is a natural measure of
the outer scale of the turbulence, and should be resolved and
independent of resolution in a converged simulation.

We consider only the azimuthal correlation length, as
this is most straightforward to compute, and is most often
underresolved in global simulations (HGK). The correlation
function at radius r on the equatorial plane is

R(φ) =
∫ 2π

0
δf (φ0)δf (φ0 + φ)dφ0 , (13)

where δf is deviation from the average value of variable f at r.
In practice, we average R over a small area rΔrΔθ across the
equatorial plane, normalize, and average in time:

R̄(r, φ, t) =
∫

r± Δr
2 , ±Δθ

R(r, θ, φ, t)rdrdθ/(rΔrΔθ ) (14)

R̄(r, φ) =
∫ t2

t1

R(r, φ, t)/R(r, 0, t)dt . (15)

Note that the correlation function for magnetic field is defined
as

R(φ) =
∫ 2π

0
δbμ(φ0)δbμ(φ0 + φ)dφ0 , (16)

where bμ is defined in Section 2. Then

λ : R̄(r, λ) = R̄(r, 0)/e (17)

is the correlation length at radius r.
Figure 4 shows the azimuthal correlation length for density ρ,

internal energy u, magnetic field b, and θe for all runs. Evidently
the correlation lengths (angles) are nearly independent of r,
except close to the outer boundary where the models are not in
a steady state. The correlation length varies from about 0.2π
at the lowest resolution to 0.1π at the highest resolution for all
variables except b. Since H/r ∼ 0.3 for all models5 over a wide

5 The scale height at each radius is defined as the average of∫ π/2
θ0

(θ − π/2)2ρdθ/
∫ π/2
θ0

ρdθ and
∫ π−θ0
π/2 (θ − π/2)2ρdθ/

∫ π−θ0
π/2 ρdθ , where

θ0 is the colatitude angle of the cutout = 0.017π .
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Figure 2. Radial profile of plasma β (upper row) and electron temperature θe (lower row) for each resolution. The columns are for the soft polar boundary (left) and
hard polar boundary (right).

Figure 3. Plasma β (left) and electron temperature θe (right) plotted as a function of resolution at the ISCO (r = 2.04) and r = 8. The black lines are for the soft polar
boundary and the red lines are for the hard polar boundary.

(A color version of this figure is available in the online journal.)
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Figure 4. Azimuthal correlation length as a function of radius for each resolution. From the top panel, density (ρ), internal energy (u), magnetic field (b), and electron
temperature (θe) are shown. The left column is for the soft polar boundary and the right column is for the hard polar boundary.

range in radius (Figure 5), this corresponds (assuming flat space
geometry) to 1–2 vertical scale heights.

The non-dimensional resolution λ/Δφ 
 12(λ/(H/r)) ×
(Nx1/384), where Δφ = 2π/Nx3 , is marginal even for our
highest resolution simulation. For b, the correlation length of
the highest resolution is smaller than that for any other variable.
The magnetic field structure is underresolved.

Figure 6 plots correlation length against resolution at the
ISCO for the same variables as in Figure 4; here, red is the hard

polar boundary and black is the soft polar boundary. The dotted
lines show how the correlation length would vary if it were fixed
at 2, 5, and 10 grid zones.

For ρ, u, and θe (the non-magnetic variables), the cor-
relation length is ∼5 grid zones for the two lowest reso-
lution simulations. At higher resolution—Nx1 = 192 and
384—the correlation length increases to >10 grid zones, and
the slope of the change in correlation length with resolution
decreases. This suggests that for the two highest resolution
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Figure 5. Radial profile of the scale height H/r for the runs with the soft polar
boundary. The runs with the hard polar boundary have similar profiles.

runs some structures in the turbulence are beginning to be
resolved.

For b, on the other hand, the correlation length decreases
nearly proportional to the grid scale, with the correlation length
fixed at around five grid zones per correlation length. There
are small signs of an increase at the highest resolution, but in
light of run-to-run variations the significance of this increase is
marginal at best. The outer scale for the magnetic field is not
resolved.

For all variables the correlation lengths for hard and soft
boundary polar conditions are consistent. Evidently, the polar
boundary does not influence the structure of turbulence in the
equatorial disk.

How do these correlation lengths correspond to those found
in local model simulations? Guan et al. (2009) found in their
unstratified shearing box model that the three-dimensional
correlation function was a triaxial ellipsoid elongated in the
azimuthal direction and tilted into trailing orientation. The
relationship between our azimuthal correlation length λb and
the Guan et al. (2009) results is

λ =
(

cos2 θtilt

λ2
maj

+
sin2 θtilt

λ2
min

)−1/2

, (18)

where θtilt ≈ 15◦ is the tilt angle of the correlation ellipse,
and λmaj and λmin are the major and minor axes of magnetic
correlation lengths, respectively. For the best resolved net
azimuthal field model in Guan et al. (2009) (y256b, which
like our global models saturates at β 
 20), this implies
λ 
 0.17H 
 0.05 rad, or 0.016π rad. Therefore, it is surprising
that correlation length as large as 
0.3 rad ∼H is measured in
our model for the non-magnetic variables.

Davis et al. (2010) have computed correlation lengths in
stratified, isothermal models with zero net flux. In a model run
with athena at a resolution of 64 zones per scale height, the
implied azimuthal correlation length (averaged over −H < z <
H ) for the magnetic field is slightly larger than in the unstratified
models of Guan et al. (2009), about 0.23H , or 0.02π rad. Guan

& Gammie (2011) have also run stratified, isothermal models at
lower resolution with a zeus type code. They find an implied
azimuthal midplane correlation length (similarly averaged) for
the magnetic field that is even larger, about 0.9H , or 0.09π rad.
Since correlation length decreases with increasing resolution, it
is possible that Guan & Gammie (2011) are not resolving the
correlation length, and that at higher resolution the correlation
length would be closer to that measured by Davis et al. (2010).

The correlation length of our highest resolution run spans
0.6(H/r) to 0.4(H/r) from ISCO to r ∼ 10 where the
corresponding β is 7 and 16, respectively. This is larger than the
stratified shearing box results of Davis et al. (2010) but smaller
than that of Guan & Gammie (2011). To resolve the correlation
length found in Davis et al. (2010), we would need another
factor of two in linear resolution. Note that recently Beckwith
et al. (2011) found in their global thin disk MHD simulation that
azimuthal correlation length to be about 1.3(H/r) by averaging
|z| < H and 5 < r < 11. This is larger than our result but also
falls between Davis et al. (2010) and Guan & Gammie (2011).

5. SPECTRA

An interesting application of GRMHD models is to simulate
observations of sources such as Sgr A* (Dolence et al. 2009;
Mościbrodzka et al. 2009; Hilburn et al. 2010; Dexter et al.
2009, 2010; Dexter & Fragile 2011). Are the simulated spectra
converged?

The dynamical models underlying the spectral models are
run with zero cooling, and the spectra are produced in a post-
processing step. This is self-consistent as long as the flows are
advection dominated: the accretion timescale is much shorter
than the cooling timescale. We calculate the emergent radiation
using grmonty, a general relativistic Monte Carlo radiative
transfer code (Dolence et al. 2009).
grmonty makes no symmetry assumptions and includes syn-

chrotron emission, absorption, and Compton scattering. Using
the rest-frame emissivity for a hot, thermal plasma (Leung et al.
2011), the code produces Monte Carlo samples of the emitted
photons—“superphotons” that carry a “weight” representing the
number of photons per superphoton. The superphotons follow
geodesics, with weight varying continuously due to synchrotron
absorption. They also Compton scatter and produce new, scat-
tered superphotons with weight proportional to the scattering
probability. We use a “fast light” approximation, where for each
snapshot of simulation data a spectrum is created by treating
the fluid variables as if they were time-independent. This ap-
proximation is excellent for the time-averaged spectra we con-
sider here. Superphotons that reach large radius are collected in
poloidally and azimuthally distributed bins, and each bin pro-
duces a spectrum. A complete description of the code is given
in Dolence et al. (2009).

To compare runs we generate spectra for 200–1200 time slices
(depending on the length of the run) and time-average them.
The spectrum of each time slice is produced from azimuthally
averaged bins that extend from 0.12π < |θ −π/2| < 0.18π rad
with respect to the equatorial plane.

We modify the simulation-provided data in one respect before
calculating the spectrum. The quality of the non-magnetic fluid
variable integration in the funnel region is poor due to truncation
error. In particular, the temperature can be high (θe > 104) and
the particle density is determined entirely by a density floor in
HARM3D. We therefore zero the emissivity if b2/ρ > 1 to avoid
contaminating the spectrum with possibly unphysical emission.

7
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Figure 6. At ISCO, the azimuthal correlation lengths of density (λρ ), internal energy (λu), magnetic field (λb), and electron temperature (θe) are plotted as a function
of resolution. The black lines are for the soft polar boundary and the red lines are for the hard polar boundary. Black dotted lines show a correlation length of 2, 5, and
10 grid cells, to which correlation length size of 2, 5, and 10 grids correspond at each resolution in the azimuthal direction.

(A color version of this figure is available in the online journal.)

It is necessary to fix a mass, length, and time unit to generate a
radiative model. The combination GMBH sets a length and time
scale but not a mass scale because the mass of the accretion
flow is negligible in comparison to the black hole. We set
MBH = 4.5 × 106M�, comparable to the mass of Sgr A*.
The mass unit for the torus M is still free; we set it so that the
1.3 mm flux matches the observed flux from Sgr A* of 
3.4 Jy
(Marrone et al. 2006).

We want to model emission from a statistically stationary
accretion flow. Because we start with a finite-mass torus and it
accretes over time, however, there is a steady decrease in density,
field strength, accretion rate, etc., as the simulation progresses.
We scale away this long-term evolution using a smooth model,
as follows. We set the mass unit M = M0s(t), where M0 is a
constant and s(t) is a two-parameter scaling function. Then

ρunit = M
/ (

GMBH

c2

)3

uunit = ρunitc
2

Bunit = c
√

4πρunit , (19)

or expressing with s(t),

ρunit = ρ0s(t) uunit = u0s(t) Bunit = B0

√
s(t) (20)

where they are the unit mass density, internal energy, and
magnetic field strength, respectively, and ρ0, u0, and B0 are
constants. Conversion from the simulation unit to the cgs unit
is, e.g., ρcgs = ρsimρunit.

The scaling function we employ has a form

1

s(t)
= At−5/3 exp

(
− tν

t

)
, (21)

where A and tν are free parameters determined by a fit to
the numerical evolution. The form comes from fitting one-
dimensional relativistic viscous disk models (see J. C. Dolence
et al. 2011, in preparation for more complete discussion).
Note that without this time-dependent scaling procedure, or
with a different scaling procedure, the spectra would vary
systematically over the course of the simulation. The spectra
would also differ systematically with resolution because the
plasma β varies with resolution.

We fit for A and the viscous timescale tν from simulation data
after a quasi-steady state has been reached, typically from t =
2000 onward. A sample fit to Ṁ , for the 192 × 192 × 128
run, is shown in Figure 7. The variance of the normalized
accretion rate decreases with resolution, that is, at higher

8
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Figure 7. Time evolution of accretion rate for the run 192 × 192 × 128 with
hard polar boundary. Dotted line is the actual accretion rate and the solid line is
a fit of the form shown in Equation (21).

resolution the fluctuations are smaller and Equation (21) gives
an increasingly good fit. The maximum of the normalized
accretion rate is nearly independent of resolution, when models
with different resolutions are compared over the same time
interval.

Broadband, time-averaged synthetic spectra are shown in
Figure 8. The mass unit of the torus is fixed by the condition
that fν(230 GHz) = 3.4 Jy for an Sgr A* model measured at the
solar circle. The shape of the spectrum is broadly similar at all
resolutions for both polar-boundary conditions.

Figure 9 shows flux density plotted against resolution in the
infrared (3.8 μm) and X-ray (integrated from 2 keV to 8 keV)
where most of the emission is from direct synchrotron and
single Compton scatterings, respectively. Some of the variation
is likely due to run-to-run variation, as indicated by the error
bars on the Nx1 = 96 and Nx1 = 144 models. The flux varies

with resolution by less than about 50% at infrared and 30% at
X-ray for Nx1 > 144. The spectra therefore appear remarkably
consistent and independent of resolution, at least for the M and
Ṁ appropriate to Sgr A*.

In a sense this is not surprising, because (1) our normalization
procedure removes much of the variation that might arise from
the decrease of β with resolution, and (2) the temperature is
very well converged. The combined effect of the fixed flux
normalization and the variation with resolution is to strengthen
the magnetic field slightly and move the synchrotron peak
slightly further into the infrared. This is echoed in the first
Compton bump in the X-ray, which is forced to slightly higher
energy by the increase in infrared input photons. While we have
demonstrated this for only a single set of the model parameters
(M, fν(230 GHz)), exploration of slightly different models with
similarly consistent results shows that this is not a unique case.

6. SUMMARY

We have investigated convergence of global GRMHD simu-
lations of hot accretion flows onto a black hole and the emergent
spectrum. We have run GRMHD simulations for four different
resolutions, 96×96×64, 144×144×96, 192×192×128, and
384×384×256, in spherical polar coordinates. We have probed
convergence using three diagnostics: time-averaged radial pro-
files of non-dimensional quantities (plasma β and electron tem-
perature θe), azimuthal correlation lengths for several variables
including the magnetic field, and artificial spectra generated
with a Monte Carlo code.

For most of our diagnostics there are substantial differences
between the lowest (96×96×64) and next lowest (144×144×
96) resolution, and relatively minor changes at higher resolution.
Run-to-run variations in the lower resolution models tend to
be larger than the differences between the higher resolution
(192 × 192 × 128 and 384 × 384 × 256) models.

We find that the magnetic correlation length is not converged.
It decreases nearly linearly with resolution, with the number of
grid cells per magnetic correlation length fixed at ∼5, although
we do see a slight increase as resolution increases. Comparison
with local model/shearing box simulations suggests that the
turbulence does not change qualitatively at higher resolution.

Figure 8. Spectra for each resolution. Flux is fixed to 3.4 Jy at 1.3 mm shown by the vertical solid line. The left plot is for the soft polar boundary and the right plot is
for the hard polar boundary.
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Figure 9. Infrared flux density (3.8 μm, left) and X-ray flux (integrated from 2 keV to 8 keV, right) as a function of resolution. The black lines are for the soft polar
boundary and the red lines are for the hard polar boundary.

(A color version of this figure is available in the online journal.)

Such comparisons also suggest that another factor of ≈2 in
linear resolution (costing about 1.6 × 107 cpu hours) would
resolve the azimuthal magnetic correlation length. None of the
existing simulations (local or global) resolve scales more than
a factor of ≈4 smaller than the correlation length (particularly
the minor axis correlation length, which is oriented nearly along
the radial unit vector and which we have not investigated here).
If we identify the correlation length with the outer scale of
MRI-driven turbulence, as seems reasonable, then none of these
models have a resolved inertial range.

On the other hand, time-averaged synthetic spectra based on
the GRMHD models, with parameters fixed to match Sgr A*,
are remarkably reproducible from resolution to resolution. This
suggests that simulated observations from existing simulations
have some predictive power. We think it likely that the leading
source of error in the high-resolution radiative models is now
related to the underlying physical model (particularly the fluid
model treatment of the plasma, and the absence of conduction)
rather than the finite resolution of the models.

A similar convergence study has been conducted by HGK for
non-relativistic global models. It is worth asking whether our
models are converged according to the dimensionless resolution
Q, the ratio of the most unstable MRI wavelength6 to the grid
cell size in the azimuthal and vertical directions. In the azimuthal
direction, ignoring relativistic corrections,

Q3 = λMRI

rΔφ

 2π

(
H

r

) |B3|
cs

√
2ρ

1

Δφ
(22)


 2π

(
H

r

)
β−1/2 1

Δφ
(23)

(Qy or Qφ in HGK’s notation), where cs ∼ HΩ is the sound
speed. This gives Q3 � 22 and �10 for Nx1 = 384 and 192,
respectively, for all radii less than 10. In the vertical direction,

Q2 
 2π

(
H

r

) |B2|
cs

√
2ρ

1

Δθ
= Q3

|B2|
|B3|

Δφ

Δθ
(24)

6 Although Q is well defined, the background state is turbulent and there are
no well-defined linear MRI modes.

(Qz in HGK’s notation), where Δθ is the zone size in
Kerr–Schild coordinates at the midplane. Since |B3/B2| is usu-
ally ∼3–10 and Δφ/Δθ = 4, this gives Q2 � 9–29 and 4–13 for
Nx1 = 384 and 192, respectively, for all r < 10. The required
Q values to resolve the characteristic wavelength are Q3 � 6
(Sano et al. 2004) and Q2 � 20–60. Hence, MRI in the toroidal
direction is resolved but not in the poloidal direction in these
runs according to HGK’s Q criterion.

We summarize our findings in the form of guidance for future
simulators. (1) The resolution 96 × 96 × 64 is too low. The
convergence measurements differ by factors of several from the
highest resolution runs, and the magnetic field weakens steadily
in a relative sense (β increases) over the course of the run. (2)
The resolution 144×144×96 shows early signs of convergence
except for the correlation length of the magnetic field; (3) the
resolutions 192×192×128 and 384×384×256 differ relatively
little from each other and show signs of convergence in the
azimuthal correlation lengths, the temperature, and spectra, but
not in the correlation length of magnetic field; (4) the observed
trends with increasing resolution (to the extent that they are
significant at the highest resolution) are that β decreases, θe

increases, correlation lengths decrease, and IR and X-ray fluxes
increase relative to millimeter fluxes, which we use to normalize
the spectrum.
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