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ABSTRACT

As two black holes bound to each other in a close binary approach merger their inspiral time
eventually becomes shorter than the characteristic inflow time of surrounding orbiting matter. Using
an innovative technique in which we represent the changing spacetime in the region occupied by the
orbiting matter with a 2.5PN approximation and the binary orbital evolution with 3.5PN, we have
simulated the MHD evolution of a circumbinary disk surrounding an equal-mass non-spinning binary.
Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by
extrapolation from Newtonian results. The binary opens a low-density gap whose radius is roughly
two binary separations, and matter piles up at the outer edge of this gap as inflow is retarded by
torques exerted by the binary; nonetheless, the accretion rate is diminished relative to its value at
larger radius by only about a factor of 2. During inspiral, the inner edge of the disk at first moves
inward in coordination with the shrinking binary, but as the orbital evolution accelerates, the rate at
which the inner edge moves toward smaller radii falls behind the rate of binary compression. In this
stage, the rate of angular momentum transfer from the binary to the disk slows substantially, but the
net accretion rate decreases by only 10–20%. When the binary separation is tens of gravitational radii,
the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black
holes in galactic nuclei could be very luminous at this stage of their evolution. If the luminosity were
optically thin, it would be modulated at a frequency that is a beat between the orbital frequency of
the disk’s surface density maximum and the binary orbital frequency. However, a disk with sufficient
surface density to be luminous should also be optically thick; as a result, the periodic modulation may
be suppressed.

Subject headings: Black hole physics - magnetohydrodynamics - accretion, accretion disks - Galaxies:
nuclei

1. INTRODUCTION

There is now excellent evidence that every galaxy with
a bulge contains a supermassive black hole at its center
(Gültekin et al. 2009). In addition, the prevailing theory
of galaxy formation posits that today’s massive galax-
ies were assembled from smaller pieces, as dark-matter
haloes of progressively greater size merged (Davis et al.
1985; Bardeen et al. 1986). If massive black holes were
already present in those progenitors, they would bring
their black holes with them into the new combined
galaxy, creating an opportunity for the black holes to
merge. Such an event would be very exciting to detect
for many reasons: It would reveal the presence of su-
permassive black holes early in the life of galaxies. It
would shed important light on the growth of the strong
correlations between nuclear black hole mass and galaxy
structure (Gültekin et al. 2009). Most of all, it would
provide a concrete example of one of general relativity’s
most spectacular predictions and possibly also allow a
test of the validity of general relativity in a truly strong-
field regime.
An extremely large amount of energy is very rapidly

released in a binary black hole (BBH) merger event,
almost all of it through gravitational radiation [sev-
eral percent of the black hole masses in a timescale
of ∼ (MBBH/M⊙) × 493µs]. Gravitational radia-
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tion may be strong enough to eject the final rem-
nant from its host galaxy, with recoil velocities or
“kicks” up to ≈ 103 km/s predicted by numerical rel-
ativity simulations (Baker et al. 2007; Campanelli et al.
2007a,b; González et al. 2007; Herrmann et al. 2007;
Koppitz et al. 2007; Baker et al. 2008; Healy et al.
2009; Lousto et al. 2010; Lousto & Zlochower 2011;
Lousto et al. 2012). Unfortunately, a gravitational wave
observatory with adequate sensitivity in the appropri-
ate frequency range is still well in the future, whether
it operates by direct detection or through pulsar timing
(Jennrich 2009; Wen et al. 2011). On the other hand,
even if only a small part of the energy is deposited in
nearby gas, the associated photon signals might be much
more readily seen with instruments operating today. Be-
cause the energy given to the gas comes from work done
by gravitational forces, one would expect, on the basis of
the Equivalence Principle, that the total energy added to
the gas would be proportional to its mass. If most of this
added energy is dissipated into heat (local irregularities
are likely to drive shocks), the total energy radiated in
photons would then be similarly proportional to the gas
mass (Krolik 2010). The question is, therefore: “How
much mass would one expect in the neighborhood of a
black hole merger?”
Even if a BBH were supplied with mass at a rate char-

acteristic of high luminosity quasars (∼ 10M⊙ yr−1), sev-
eral effects may severely reduce how much gas remains
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close to the binary. Torques exerted by the binary on the
inflowing gas may hold back the inflow, preventing much
of it from approaching closer than a few times the binary
separation a (Pringle 1991; MacFadyen & Milosavljević
2008). As the binary compresses, whether by interactions
with passing stars and external gas or by gravitational
radiation, the gas follows, but is held off at a distance of
at least ≃ 2a. Toward the end of the binary’s evolution,
gravitational radiation losses grow rapidly and dominate
the orbital shrinkage. Ultimately, the orbit shrinks on a
timescale shorter than the characteristic accretion inflow
time and the BBH is expected to decouple from the disk.
After such decoupling, there would not be enough time
for much disk mass to catch up with the black holes be-
fore they merge (Milosavljević & Phinney 2005). Thus,
for a given external supply rate, the amount of gas avail-
able to be heated in a merger is determined by a compe-
tition between the internal stresses that drive inflow and
a pair of dynamical mechanisms that tend to keep gas at
“arms-length” from the merging black holes.
Until recently, efforts to quantify these effects

have relied almost entirely on the phenomenolog-
ical Shakura-Sunyaev α-disk model to describe
internal stresses (Milosavljević & Phinney 2005;
MacFadyen & Milosavljević 2008; Liu & Shapiro
2010; Tanaka & Menou 2010), in which the vertically-
integrated and time- and azimuthally-averaged internal
stress is supposed to be a factor α times the sim-
ilarly integrated and averaged pressure; the only
exceptions were studies focusing on binaries with
large mass ratios between primary and secondary, a
limit primarily relevant to planet formation and to
extreme-mass ratio inspiral sources (Winters et al. 2003;
Papaloizou & Nelson 2003; Nelson & Papaloizou 2003;
Kocsis et al. 2011; Yunes et al. 2011). Moreover, with
the exception of Farris et al. (2011) and Bode et al.
(2012), which assumed these stresses were negligible, all
these calculations also assumed Newtonian dynamics.
However, there is strong reason to think that the actual
mechanism of these stresses is magnetohydrodynamic
(MHD) turbulence, stirred by the magnetorotational
instability (MRI) (Balbus & Hawley 1998). In contrast
to ordinary, isotropic turbulence, orbital shear makes
this turbulence highly anisotropic, so that there is a
non-zero correlation between the radial and azimuthal
components of the magnetic field; this correlation creates
the stress. MHD calculations are therefore required,
at the very least, to establish the appropriate scale of
the stresses and the approximate magnitude of α. In
addition, although the α-model may give a reasonable
description of time-averaged behavior well inside the
body of an accretion flow, it is particularly ill-suited
for predicting dynamical behavior on shorter timescales
(Hirose et al. 2009) and at disk edges (Krolik et al.
2005; Noble et al. 2010). Because the key issues in how
much gas reaches a merging BBH depend, of course, on
the time-dependent behavior of gas near and within the
inner edge of a disk, explicit calculation of the MHD
turbulence is also required for an accurate treatment of
the time- and spatial-dependence of the internal stress.
In this paper, we present the first simulation of a cir-

cumbinary accretion disk around a binary black hole
system during the epoch in which the binary’s inspi-
ral time grows shorter than the inflow time through

the disk. Generically, this period occurs not long be-
fore the binary’s final merger. Our physics treatment
includes fully relativistic MHD. This study differs from
that of Shi et al. (2011), who presented similar MHD
simulations, but concentrated on the Newtonian regime,
when the black holes are very widely separated. More-
over, their Newtonian treatment did not allow for the
black holes to inspiral, a reasonable assumption when
the semi-major axis is hundreds of thousands of gravita-
tional radii, but a terrible assumption in the late inspiral.
We here focus on BBHs with separations of ∼ (10–20) rg,
where rg ≡ GM/c2 and M is the total mass of the bi-
nary (we adopt geometric units with G = c = 1 for the
remainder of this paper). The spacetime associated with
the BBH orbital dynamics is described through a vac-
uum post-Newtonian (PN) approximation (see the re-
view paper of Blanchet (2002) and references therein),
where we neglect the back reaction of the disk on the
BBH dynamics. Our work also contrasts with that of
Giacomazzo et al. (2012), who employed full numerical
relativity to compute the spacetime in which an initially
uniform gas distribution with an externally-imposed uni-
formmagnetic field evolved during the last 3 orbits before
merger.
As we will describe below, the PN approximation is

adequate to describe the spacetime evolution for our
needs. The PN scheme is a method to describe ap-
proximately the dynamics of physical systems in which
motions are slow compared to the speed of light and
gravitational fields are weak. That is, one solves the
Einstein field equations perturbatively, expanding in
(v/c)2 ≪ 1 and rg/r = GM/(rc2) ≪ 1 Here v, M
and r are the characteristic velocity, mass and size or
separation of the system. This approximation has been
remarkably effective in describing the perihelion preces-
sion of Mercury Einstein (1915), and the gravitational-
wave loss from binary systems, such as the Hulse-Taylor
pulsar, PSR B1913+16 (see e.g. Weisberg & Taylor
(2005); Will (2011)). PN theory also plays a key
role in the construction of the gravitational-waveform
templates (Sathyaprakash & Schutz 2009) for inspiral-
ing compact objects currently used in the search for
gravitational waves by laser-interferometric observato-
ries. PN theory has also been recently interfaced with
numerical relativity simulations to serve as initial data
for the modeling of BBH mergers (Tichy et al. 2003;
Bonning et al. 2003; Yunes et al. 2006; Yunes & Tichy
2006; Yunes 2007; Kelly et al. 2007; Campanelli et al.
2009; Johnson-McDaniel et al. 2009; Kelly et al. 2010;
Mundim et al. 2011). In all cases, the PN approximation
is developed to sufficiently high perturbative order that
the error contained in the approximation is much smaller
than that associated with either the data in hand (in the
case of binary pulsars) or the data expected (in the case
of direct gravitational wave detection).
Using this PN-approximated description of the space-

time, we first evolve the BBH at a fixed initial separation
a0 = 20M to allow the accretion disk to relax to a quasi-
steady state. To study the effect of orbital shrinkage on
the accretion disk, we then follow the binary inspiral un-
til it reaches a separation a = 8M , beyond which the PN
approximation ceases to be sufficiently accurate for our
purposes. In a separate simulation, we kept the binary’s
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separation fixed at 20M and continued to evolve until
≃ 76000M to study the secular dynamics of the quasi-
steady state, and, by contrasting with the first simula-
tion, highlight the special effects induced by the inspiral.
Our findings can be summarized as follows. The mass

at r ≃ 2.5a builds steadily throughout the quasi-steady
state, but much of it eventually concentrates in a distinct
“lump”. At smaller radii, a gap is cleared as torques and
forces exerted by the binary either sweep matter inward
or fling it outward. Much of the small amount of mass
in this gap is found in a pair of streams emanating from
the inner edge of the disk and curving inward toward
each black hole. These streams carry nearly half of the
mass accreting through the bulk of the disk to the inner
boundary of the problem volume at r = 0.75a0.
As the binary starts to shrink, the inner edge of the

disk at first moves inward following the orbital evolution
of the binary, but eventually cannot keep up, as the or-
bital shrinkage grows faster. Nevertheless, a significant
amount of mass still follows the binary’s inspiral within
the gap region. We find that the final accretion rate in
the inspiral stage is about 70% of the corresponding rate
in the steady-state stage.
The luminosity of the disk is proportional to its sur-

face density. If the accretion rate fed to the disk were
comparable to that of ordinary AGN, the surface den-
sity, and therefore the luminosity, of such a circumbinary
disk could approach AGN level. Most strikingly, the lu-
minosity should be modulated periodically at a frequency
determined by the binary orbital frequency and the bi-
nary mass ratio—1.46 times the binary orbital frequency
in the case of equal masses. However, the amplitude of
modulation may be reduced by the large optical depth of
the disk if the surface density is large enough to generate
a sizable luminosity.
This paper is organized as follows. In Section 2 we de-

scribe the construction of the dynamical BBH spacetime.
In Section 3, we report the details of the MHD simula-
tions of the disk. In Section 4 and Section 5, we present
the results from these simulations and interpret them in
the light of previous work and from the point of view of
potential observational signatures. Finally, in Section 6,
we summarize our principal conclusions.

2. BINARY BLACK-HOLE SPACETIME

While solutions of the Einstein equations for
single black holes were discovered as early as
1916 (Schwarzschild 1916), no exact closed-form solution
to the two-body problem exists and one generally needs
to solve the Einstein equation numerically. With the
breakthroughs in numerical relativity (Pretorius 2005;
Campanelli et al. 2006; Baker et al. 2006; Scheel et al.
2006), it is now possible to perform stable and accurate
full numerical simulations of BBHs in vacuum for a wide
variety of mass ratios and spins parameters. However,
because the Einstein equations can be thought of as mod-
ified wave equations, with wave speeds of c, the Courant
condition1 greatly limits the timestep size, making full
numerical simulations impractical when the character-
istic MHD speeds are significantly smaller than c. On

1 The Courant condition is a stability condition relating the
timestep dt to the spatial resolution h. The timestep is limited by
dt < h/v, where v is the fastest propagation speed in the system
of interest.

the other hand, if an approximate, but accurate, space-
time is given, the Courant condition is set by the MHD
speeds, allowing for a much larger timestep. Fortunately,
analytic perturbative techniques have been successfully
developed to tackle the spacetime problem both in the
regime where the black holes are not too close, as well
as in the close limit regime where the spacetime can be
treated as a perturbed single black hole. In this paper,
we use the PN approach to model the spacetime of an
inspiraling binary system prior to merger, neglecting the
effect of the disk on the evolution of the black holes, from
orbital separations of 20M down to ∼ 8M , roughly where
the standard PN approximation becomes inaccurate for
our purposes.
Using this PN-approximated solution, we then solve

for the relativistic MHD evolution of the circumbinary
accretion disk. We stop the PN evolution at r = 8M ,
but one can in principle continue the simulations beyond
this regime. To do so, one could use a snapshot of the PN
metric and MHD data at that radius as initial conditions
to then carry out a fully non-linear GRMHD evolution,
using numerical relativity techniques to solve the coupled
GRMHD Einstein system of equations (which will be the
subject of an upcoming paper).
We perform two simulations: (i) RunSS keeps the

semi-major axis of the binary artificially fixed at 20M ;
(ii) RunIn starts from a snapshot of RunSS at t =
40000M (or after ≃ 70 orbits) and then lets the black
holes inspiral at the PN-theory prescribed rate down to a
separation of ∼ 8M . RunSS is used to study the secular
evolution of the accretion disk at fixed binary separation,
while RunIn is used to investigate how the diminishing
separation alters this secular evolution. We describe our
PN approach to model the spacetime metric below.

2.1. The post-Newtonian Approximation

The PN approximation is based on a perturbative ex-
pansion of all fields, assuming slow motion v/c ≪ 1 and
weak fields GM/(rc2) ≪ 12. These assumptions allow
us to search for solutions that can be expressed as a di-
vergent asymptotic series about a flat Minkowski back-
ground spacetime. These perturbations obey differential
equations determined by the PN-expanded Einstein field
equations. One then solves such equations perturbatively
and iteratively to construct an approximate solution.
The two body problem in the slow-motion/weak-

field limit is better understood by classifying the
spacetime into different regions, where different as-
sumptions hold and different approximations can be
used (see e.g. Thorne (1980); Alvi (2000, 2003);
Yunes et al. (2006); Yunes & Tichy (2006); Yunes
(2007); Johnson-McDaniel et al. (2009) for a review).
Here we concentrate on the near zone, which is the region
sufficiently far from the horizons that the weak-field ap-
proximation of PN is valid, but less than a reduced gravi-
tational wave wavelength λ away from the center of mass
of the system, so that retardation effects can be treated
perturbatively. We note that in the far zone, i.e. the ra-
diation zone where retardation effects can no longer be
treated perturbatively, a multipolar post-Minkowskian
expansion can be used rather than a PN one. Very close

2 Note that we have explicitly re-introduced c and G in this
section in order to discuss the PN approximation.
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to each black hole (i.e. in the inner zone), perturbed
Schwarzschild solutions are used (which can be extended
to include spin by using perturbed Kerr solutions). In
this paper, the binary black hole metric will be approxi-
mated with only the near zone solution.
The PN approximation, of course, has its limits: binary

systems eventually become so closely separated that a
slow-motion/weak-field description is inappropriate. For
example, consider the simple case of a test particle spi-
raling into a non-spinning (Schwarzschild) black hole in
a quasi-circular orbit. Eventually, the particle will reach
the innermost stable circular orbit, at which point its
orbital velocity v/c ∼ 0.41. Clearly, such a velocity is
not much less than unity, and thus, the PN approxi-
mation need not be an accurate description of the rel-
ativistic orbital dynamics. Similarly, when comparable-
mass BBHs inspiral, they eventually reach a separation
at which the PN approximation is a bad predictor of the
dynamics, since the small-velocity/weak-field assump-
tions are violated.
The determination of the formal region of validity of

the PN approximation is crucial, but it can only be as-
sessed when one possesses a more accurate, perhaps nu-
merical, description of the orbital dynamics. This is in-
deed the case when considering extreme mass-ratio in-
spirals (EMRIs), consisting of a stellar-mass compact ob-
ject spiraling into a supermassive black hole. When con-
sidering EMRIs, one can model the spacetime through
black hole perturbation theory, i.e., by decomposing the
full metric as that of the supermassive black hole plus
a perturbation induced by the stellar-mass compact ob-
ject, without assuming slow motions (see e.g. Section 4
of Hughes (2009) for a recent review, Mino et al. (1997);
Sasaki & Tagoshi (2003); Barack (2009); Poisson et al.
(2011) for related topics). To leading-order, the orbital
dynamics are then described by geodesics of the small
object in the spacetime of the supermassive black hole.
The orbital motions are slowly perturbed by the radia-
tion reaction due to the emission of gravitational waves.
The comparison of black hole perturbation theory and

PN theory predictions has allowed for the construction
of different measures to estimate the PN region of va-
lidity. When considering the reduction in signal-to-noise
ratio induced by filtering an “exact” black-hole perturba-
tion theory gravitational wave with a 4PN3 order filter,
Poisson (1995) found that PN theory is sufficiently ac-
curate provided v ∼< 0.2. When considering the 5.5 and
4PN order predictions for the loss of the binary’s binding
energy for non-spinning and spinning background black
holes respectively, relative to an “exact” black hole per-
turbation theory prediction, Yunes & Berti (2008) and
Zhang et al. (2011) found that the former is accurate pro-
vided v ∼< 0.29, which corresponds to an orbital separa-
tion of a ∼> 11M . The difference between these estimates
is due to the different measures used and the different
order of the PN approximation employed4.
The region of validity of the PN approximation for

3 This was extended to 5.5PN order in the erratum and adden-
dum of Poisson (1995).

4 It is not surprising that beyond 3PN order the region of validity
of the PN approximation shrinks. This is a property of divergent
asymptotic series, whose behavior in the context of PN theory was
analyzed by Yunes & Berti (2008) and Zhang et al. (2011).

comparable-mass binaries has not been as well stud-
ied. This is because black hole perturbation theory is
not applicable here, and one must rely on full numer-
ical relativistic simulations. Currently, state-of-the-art
simulations can only model the last few tens of orbits
prior to merger, while the determination of the formal
region of validity would require knowledge of at least
the last thousand orbits. Nonetheless, there exist an-
alytical arguments suggesting that the region of valid-
ity in the comparable-mass case is larger than in the
EMRI case (i.e., the PN expansion is valid for even
larger velocities) (Simone et al. 1997; Blanchet 2003;
Mora & Will 2004). Moreover, the NINJA (Numeri-
cal INJection Analysis)-2 project (Ajith et al. 2012), a
collaboration between numerical relativists and gravita-
tional wave data analysts, has established that certain
3PN order gravitational waveforms are sufficiently accu-
rate for use as templates provided v ∼< 0.33 (a ∼> 8M).

2.2. Near-Zone PN Evolution

The PN order of a given term is determined by the
exponent of the perturbation parameter contained in
that term. In the near zone, the PN expansion of a
BBH spacetime metric is a series expansion in the orbital
velocity v/c ≪ 1 and the field strength GMA/(rAc

2),
where MA and rA are the masses of the Ath particle and
the distances from the Ath particle to a field point respec-
tively. Here, we may consider 1/c as the PN parameter
which goes to zero in the Newtonian limit c → ∞. No-
tice that by the virial theorem v2/c2 = O[GM/(a c2)].
A term proportional to (1/c)n beyond the Newtonian
(leading-order) expression is said to be of (n/2)th PN
order.
The near zone metric will be described here by a re-

summed PN expression. One begins with the 2.5PN
expansion of the metric for non-spinning point parti-
cles in a quasi-circular orbit in harmonic coordinates,
given for example in Blanchet et al. (1998). Such a met-
ric, however, describes black holes as point-particles,
which is why one then applies a “background resum-
mation”, as in Yunes & Tichy (2006); Yunes (2007);
Johnson-McDaniel et al. (2009). This resummation is in-
tended to improve the strong-field behavior of the metric
close to each point-particle, i.e., it recovers the horizon
of each individual black hole. The metric can then be
formally written as

gµν(t, ~x) = gµν [~x; ~yA(t), ~vA(t)] , (1)

where ~x is a spatial vector from the binary’s center of
mass to a field point, while ~yA(t) and ~vA(t) are the parti-
cle’s spatial location and 3-velocity with A = (1, 2). This
metric depends on the mass of each individual black hole,
but also on the binary orbital evolution {~yA(t), ~vA(t)}
that must be prescribed separately. We will use Greek
letters (e.g., µ, ν, λ, κ) to represent spacetime indices
[0, 1, 2, 3], and Roman letters (e.g., i, j, k, l) to repre-
sent spatial indices [1, 2, 3].
The orbital evolution can also be prescribed within

the PN approximation. We simplify the analysis by
considering only quasi-circular orbits. This simplifi-
cation is justified because gravitational wave emission
tends to circularize binaries very efficiently, as demon-
strated in the weak (Peters 1964) and strong field
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regimes (Sperhake et al. 2008; Hinder et al. 2008, 2010).
We will here use a 3.5PN expansion for the orbital phase
evolution φ(t), as given for example by Equation (234)
of Blanchet (2002), which depends on the quantity Θ =
ν(tc − t)/(5M), where t is time, tc is the time of co-
alescence, M is the total mass and ν = M1M2/M

2 is
the symmetric mass ratio. The PN orbital frequency is
calculated from Ωbin = dφ/dt in this paper.
Although waveforms can be fully characterized by har-

monics of the orbital phase, the latter depend on the
orbital trajectories. One may model these in harmonic
coordinates via

yi1(t)=
M2

M
a(t) [cosφ(t), sinφ(t), 0] , (2)

yi2(t)=−M1

M
a(t) [cosφ(t), sinφ(t), 0] , (3)

where a(t) = |~y1(t) − ~y2(t)| is the orbital separation as
a function of time. This separation can be calculated
via the balance law (see e.g., (Blanchet 2002)), which
states that the local rate of change of the binary’s orbital
binding energy is exactly balanced by the gravitational
wave luminosity carried out to future null infinity and
into black hole horizons, namely

dEOrb

dt
= −L . (4)

The rate of change of the orbital separation is then given
by

da

dt
= −

(

dEOrb

da

)−1

L . (5)

Assuming the initial condition a(t = 0) = a0, we then
find

t = tc −
∫ a

0

da′
(

dEOrb

da′

)

L−1 , (6)

where the integrand is expanded in a Taylor PN series
and the coalescence time tc is defined by

tc =

∫ a0

0

da

(

dEOrb

da

)

L−1 . (7)

In this paper, we only use the part of L that is carried
to future null infinity and, although Equations (6,7) are
typically Taylor expanded to evaluate t(a), here they are
inverted through Newton-Raphson minimization to yield
a(t).
Given the above analysis, we can now calculate the

time of coalescence and the number of orbits in each
of the simulations carried out. As already discussed,
RunSS is artificially kept at a fixed semi-major axis, so
a(t) = a0 for all times, and thus, formally tc = ∞. On
the other hand, RunIn keeps a(t) fixed to a(t) = a0 =
20M for t < tshrink ≡ 40000M , after which it is allowed
to evolve according to the PN equations of motion. The
time of coalescence for this run can be computed by in-
verting Equation (6) to obtain tc ∼ 14000M , although
to leading order it is approximately described by (Peters
1964)

tc ∼
5

256ν

( a0
M

)4

M =
5

256

( a0
M

)4 (1 + q)2

q
M , (8)

where q = M2/M1 is the binary mass ratio. A
BBH clearly takes longer to merge for systems that start

at larger initial separations and that possess extreme
mass ratios. Obviously, tc is always defined as the
length of time to coalesce, when the binary is allowed
to inspiral. The total simulation time of RunIn is then
tc + tshrink ∼ 54000M .

Fig. 1.— The orbital motion of one of the black holes in the
binary from RunIn . Its trajectory starts from an initial separation
of a(0) = 20M and stops at a(tf ) ≃ 8M . Its black hole companion
is located at a parity-symmetric point across the origin (track not
drawn in the figure for the sake of clarity).

Fig. 2.— The evolution of the orbital separation with respect
to time, a(t). We turn on the gravitational radiation reaction at
t = 40000M .

We have plotted a few diagnostics to get a sense of
the evolution of the binary system in RunIn . Figure 1
shows the orbital evolution of the binary in the x-y plane,
after it is allowed to inspiral. Figure 2 plots the orbital
separation as a function of time. Observe that initially
the semi-major axis is artificially kept fixed, while after
t > tshrink it is allowed to decrease due to gravitational
radiation reaction. Figure 3 plots the number of orbits
Norbits traced by the binary system as a function of time,
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Fig. 3.— The number of orbits as a function of time. (Black)
RunSS . (Grey) RunIn , in which the first part from t = 0 to
40000M shows the circular orbit without the radiation reaction.

which is given by

Norbits =











1

2π
Ωbin,0 t (if t < tshrink) ,

1

2π
[Ωbin,0 tshrink + φ(t − tshrink)] (if t ≥ tshrink) .

(9)

We have here defined Ωbin,0 = Ωbin(r = a0) to be the
(constant) PN orbital frequency at a fixed semi-major
axis, and we have set φ(0) = 0 for the PN phase evo-
lution. The number of orbits is obviously a piece-wise
function since when t < tshrink, Norbits increases linearly,
as the binary is artificially kept at fixed a0, while when
t > tshrink, Norbits can be approximated to leading order
by

Norbits ∼
1

64πν

( a0
M

)5/2

=
1

64π

( a0
M

)5/2 (1 + q)2

q
.

(10)
Therefore, for RunIn there are approximately 100 total
orbits, while for RunSS there are approximately 127 or-
bits.

3. SIMULATION DETAILS

Like accretion disks around single black holes, cir-
cumbinary accretion flows are well described by the
ideal MHD equations of motion (EOM) in the curved
spacetime of only the black hole or holes. We there-
fore neglect the matter’s contribution to spacetime cur-
vature and the accumulation of mass and momentum
by the black holes from gas accretion. Many codes
have been written to simulate the single black hole case
(e.g., Koide et al. (1999); De Villiers & Hawley (2003);
Gammie et al. (2003); Noble et al. (2006); Anninos et al.
(2005); Komissarov (2005); Tchekhovskoy et al. (2007);
Noble et al. (2009)), while only the equations of elec-
trodynamics (Palenzuela et al. 2009), force-free MHD
(Palenzuela et al. 2010b,a) and nonmagnetized hydro-
dynamics (e.g., Bode et al. (2010); Farris et al. (2010,
2011); Bode et al. (2012)) have been solved in the rela-
tivistic circumbinary setting. Unfortunately, these latter
simulations employ methods, like block-structured adap-
tive mesh refinement (AMR) in Cartesian coordinates,
that typically lead to poor conservation of fluid angu-
lar momentum and excessive dissipation at refinement

boundaries. These two effects alter the disk’s angular
momentum transport mechanism and thermodynamics
in a nontrivial way. Furthermore, they require the solu-
tion of the Einstein equations, which—in turn—imposes
a significant computational burden. In order to avoid
these problems, we take an alternate route and solve
the MHD EOM using a code designed for single black
hole systems: Harm3d (Noble et al. 2009). Fortunately,
Harm3d was written to be almost independent of coor-
dinate system or choice of spacetime, so modifying it
to handle non-axisymmetric, time-dependent spacetimes
was straightforward. In fact, the only differences between
the algorithm described in Noble et al. (2009) and here
are that the metric (and its affine connection or gravita-
tional source terms) needs to be updated every sub-step
of the second-order Runge-Kutta time-integration proce-
dure5. Below, we describe the equations solved, initial
data setup and other details of the disk evolution.

3.1. MHD Evolution

Since we assume that the gas does not self-gravitate
and alter the spacetime dynamics, we need only solve
the GRMHD equations on a specified background space-
time, gµν(x

λ), where
{

xλ
}

represents a set of general
spacetime coordinates. The EOM originate from the lo-
cal conservation of baryon number density, the local con-
servation of energy, and the induction equations from
Maxwell’s equations (please see Noble et al. (2009) for
more details). They take the form of a set of conserva-
tion laws:

∂tU (P) = −∂iF
i (P) + S (P) (11)

where U is a vector of “conserved” variables, Fi are the
fluxes, and S is a vector of source terms. Explicitly, these
are

U (P) =
√−g

[

ρut, T t
t + ρut, T t

j , B
k
]T

(12)

F
i (P) =

√−g
[

ρui, T i
t + ρui, T i

j ,
(

biuk − bkui
)]T

(13)

S (P) =
√−g

[

0, T κ
λΓ

λ
tκ −Ft, T

κ
λΓ

λ
jκ −Fj , 0

]T

(14)
where g is the determinant of the metric, Γλ

µκ is the

metric’s affine connection, Bi =
∗

F
it
/
√
4π is our mag-

netic field (proportional to the field measured by ob-
servers traveling normal to the spacelike hypersurface),
∗

F
µν

is the Maxwell tensor, uµ is the fluid’s 4-velocity,
bµ = 1

ut (δ
µ
ν + uµuν)B

ν is the magnetic 4-vector or the
magnetic field projected into the fluid’s co-moving frame,

and W = ut/
√

−gtt is the fluid’s Lorentz function. The
MHD stress-energy tensor, Tµν , is defined as

Tµν = (ρh+ 2pm) uµuν + (p+ pm) gµν − bµbν (15)

where pm = bµbµ/2 is the magnetic pressure, p is the gas
pressure, ρ is the rest-mass density, h = 1+ ǫ+p/ρ is the
specific enthalpy, and ǫ is the specific internal energy, We
evolve the quantity (ρut+T t

t) instead of T t
t in order to

reduce the magnitude of the internal energy’s numerical

5 Note that many other technical changes were made that do
not affect the algorithm, but do affect the runtime efficiency and
design of the code.
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error (Gammie et al. 2003). Note that the terms propor-
tional to Γλ

tκ and Γλ
φκ in the source no longer vanish

as the metric is now dependent on time and azimuthal
coordinate, φ. Also, note that we add a negative source
term (−Fµ) to the local energy conservation equation
to model energy/momentum loss from radiative cooling;
please see Section 3.4 for more details.
The MHD evolution is facilitated by calculating and

using so-called primitive variables: the rest-mass den-
sity (ρ), the internal energy density (u = ρǫ), the ve-
locities relative to the observer moving normal to the
spacelike hypersurface, ũi = ui−utgti/gtt. The magnetic
field Bi is considered both a primitive and a conserved
variable. We employ piecewise parabolic reconstruc-
tion of the primitive variables for calculating the local
Lax-Friedrichs flux at each cell interface (Gammie et al.
2003). We use a 3-dimensional version of the FluxCT
to impose the solenoidal constraint, ∂i

√−gBi = 0 (Tóth
2000). The EMFs (electromotive forces) are calculated
midway along each cell edge using piecewise parabolic
interpolation of the fluxes from the induction equation.
A second-order accurate Runge-Kutta method is used
to integrate the EOM using the method of lines once
the numerical fluxes are found. The primitive variables
are found from the conserved variables using the “2D”
scheme of Noble et al. (2006). A conservation equation
for the entropy density is evolved and used to replace
the total energy equation of the 2D method whenever
the plasma becomes too magnetically dominated, or—
specifically—when ρǫ < 0.02pm; this procedure helps us
avoid numerical instabilities and negative pressures from
developing. Please see Noble et al. (2009) for more de-
tails.
The MHD evolution is performed in the same way as

in single black hole cases except that the metric is eval-
uated6 at the present sub-step’s time before the MHD
fields are updated. The metric is required in many facets
of the update procedure. For example, it is used in calcu-
lating the 4-velocity from the primitive velocities, source
terms and geometric factors in the EOM, and for deriv-
ing the primitive variables from the conserved variables.
The affine connection is calculated via finite differencing
the PN metric to evaluate

Γµ
νκ =

1

2
gµσ (∂νgκσ + ∂κgνσ − ∂σgνκ) . (16)

The spatial finite differences use fourth-order centered
stencils away from the physical boundaries, and back-
ward/forward stencils adjacent to the physical bound-
aries. Since the metric is evaluated and stored at the cell
centers and faces, but the connection is only evaluated
at the centers, fourth-order stencils require only three
cells’ worth of data to compute. The time derivatives
are second-order accurate, but use a time spacing 10−3

times that used in the MHD integration. This means
that additional evaluations of the metric are made at
advanced and retarded times at the cell centers to calcu-
late the time derivatives for each connection evaluation.
We have verified that the truncation error from the time
derivatives is smaller than that from the spatial deriva-
tives. Also, the connection’s spatial finite differencing is

6 We remind the reader that the metric is known in closed form,
requiring only direct evaluation except for the Newton-Raphson
iteration to find the current time’s binary separation.

one order more accurate than that of the MHD proce-
dure, implying it is not the primary source of error in
the calculation. Please see Appendix B for a discussion
on our resolution tests.

3.2. Initial Conditions

In this project, we avoid evolving the gas in the neigh-
borhood of the black holes, choosing instead to focus on
establishing reasonable prior conditions for the gas that
ultimately feeds the BBH. We therefore excise a spherical
domain, which includes the binary, from our calculation.
It is common to begin with initial conditions devoid of

large transient artifacts. This is often done by starting
from a torus of material in equilibrium (via pressure and
rotational support) about the central gravitating source
(e.g., a black hole) (Chakrabarti 1985; De Villiers et al.
2003). Unfortunately, such tori will not be near equi-
librium in our spacetime as it is (t, φ)-dependent. Plus,
the equations describing their structure assume that the
metric has the same form (i.e. share the same zero-valued
elements) as the Kerr metric in Boyer-Lindquist coordi-
nates. We resolve these issues in the following way. First,
since we hold the binary at fixed separation for several
orbits, the spacetime initially has a helical Killing sym-
metry, with Killing vector Ka = Ωbin (∂φ)

a
+ (∂t)

a
. In

other words, the spacetime is invariant in a frame rotat-
ing with the binary, while the separation is held constant.
Since the torus will lie a few a0 away from the binary,
its dynamical response time—comparable to its orbital
period—will be longer than the binary period, implying
that a torus near equilibrium in this helically-symmetric
spacetime will also be near equilibrium in its time aver-
age. Due to its helical symmetry, its time average is also
its azimuthal average. We therefore start with a torus in
equilibrium in a (t, φ)-independent spacetime, ĝµν , found
by averaging over φ:

ĝµν =

∫

gµν
√
gφφ dφ

∫ √
gφφ dφ

. (17)

We have verified that the same components that
are zero-valued in Boyer-Lindquist coordinates are
consistent with zero to within our PN-order accu-
racy in the ĝµν metric. This means we can em-
ploy a similar torus solution method as described in
Chakrabarti (1985). A description of our modifications
to the procedure—including the generalization to our φ-
averaged spacetime—is provided in Appendix A. Note
that we now ensure that the equilibrium solution is found
iteratively to greater precision, instead of the approxi-
mate method described in De Villiers et al. (2003) which
has been used in prior work of the authors in single
black hole disk evolutions (Noble et al. 2009, 2010) and
by others studying the hydrodynamic circumbinary case
(Farris et al. 2011). We find that our procedure produces
initial tori that are much closer to equilibrium than the
approximate scheme. Please see Appendix A for more
details.
Previous studies have shown that a gap develops near

2.5a for equal mass binaries (MacFadyen & Milosavljević
2008; Shi et al. 2011). We aim to study how this gap
develops, so we choose to start material outside this ra-
dius. We therefore set up a disk with inner edge located
at rin = 3a0 and pressure maximum located at rp = 5a0;
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from prior experience, rp is approximately the radius at
which the disk transitions from accreting to decreting
since matter must shed its angular momentum to fluid
elements further out in order to accrete. These outer ele-
ments gain angular momentum and form a time-averaged
decretion flow away from the central potential. We will
therefore focus on r < rp = 5a0 in our analyses. The
initial disk extends to rout ≃ 12a0, is isentropic with
p/ρΓ = 0.01, and is tuned to have an aspect ratio of
H/r = 0.1 at r = rp, where H is the density scale height
defined as the first moment of the rest-mass density with
respect to distance from the midplane:

H ≡ 〈ρ√gθθ |θ − π/2|〉
〈ρ〉 , (18)

and where the 〈X〉 denotes the average over origin-
centered spheres:

〈X〉 ≡
∫

X
√−g dθdφ

∫ √−g dθdφ
. (19)

More information about the initial torus and its solution
method is given in Appendix A. In the disk, we add
random, cell-scale noise to the the internal energy, u,
in order to hasten the development of turbulence; the
random noise is evenly distributed over the range ±5 ×
10−3.
Once the torus is in place on the grid, a surround-

ing nonmagnetized atmosphere is added as our numer-
ical scheme requires us to maintain positive values of
ρ and p. The atmosphere is initially static, ui = 0,
and in approximate pressure equilibrium: ρatm = 1 ×
10−7ρmax (r/M)−3/2, uatm = 3.3×10−6 umax (r/M)−5/2,
where ρmax and umax are—respectively—the initial max-
ima of ρ and u. We note that when either ρ or u are found
to go below, respectively, ρatm or uatm, they are set to
those atmosphere values without any modification to the
magnetic field or fluid velocity; this happens very rarely
once the disk’s turbulence saturates.
The magnetic field is initialized as a set of dipolar loops

that follow density contours in the disk’s interior. We
set the azimuthal component of the vector potential and
differentiate it to yield Bi; Bφ(t = 0) = 0 in our config-
uration. The vector potential component is

Aφ = Aφ
0 max

[(

ρ− 1

4
ρmax

)

, 0

]

. (20)

The magnitude of the field, Aφ
0 , is set such that the ratio

of the disk’s total internal energy to its total magnetic
energy is 100.

3.3. Grid, Boundary Conditions, and Parameters

The domain on which the MHD EOM are solved is a
uniformly discretized space of spatial coordinates

{

x(i)
}

that are isomorphic to spherical coordinates {r, θ, φ}:

r(x(1)) = Mex
(1)

, (21)

θ(x(2)) =
π

2

[

1 + (1− ξ)
(

2x(2) − 1
)

+

(

ξ − 2θc
π

)

(

2x(2) − 1
)n

]

,

(22)
and φ = x(3). We set n = 9, ξ = 0.87, and θc = 0.2.
The logarithmic radial coordinates are such that the ra-
dial cell extents are smaller at smaller radii in order to

resolve smaller scale features of the accretion flow there.
The x(2) ↔ θ mapping concentrates more cells near the
plane of the disk and the binary’s orbit, the equator of
our coordinate system. Let each grid cell in our nu-
merical domain be labeled by three spatial indices that
each cover [0, N (n)−1], where

{

N (n)
}

are the number of
cell divisions along each dimension. A cell with indices

(i, j, k) is located at
(

x
(1)
i , x

(2)
j , x

(3)
k

)

, where x
(n)
j = x

(n)
b +

(

j + 1
2

)

∆x(n). The grid we used is completely specified

by: x
(1)
b = ln (rmin/M), ∆x(1) = ln (rmax/rmin) /N

(1),

rmin = 15M , rmax = 260M , N (1) = 300, x
(2)
b = 0,

∆x(2) = 1/N (2), N (2) = 160, x
(3)
b = 0, ∆x(3) = 2π/N (3),

N (3) = 400.
We chose our resolution and grid extent based upon a

number of criteria. First, our θ and φ resolutions were set
in order to adequately resolve the MRI based on guide-
lines of Hawley et al. (2011) and Sorathia et al. (2011).
The radial resolution was chosen to resolve the spiral den-
sity waves—generated by the binary’s time-varying tidal
field—by several radial zones. We find that our grid ade-
quately resolves the MRI, as measured by the criteria of
Hawley et al. (2011) and Sorathia et al. (2011), through-
out the domain of interest (i.e. r < 5a0) ∀t. Please see
Appendix B for a quantitative description of these res-
olution criteria and for a demonstration of how well we
resolve the MRI.
The radial extent of the grid was inspired by Shi et al.

(2011) and the limits of our near-zone PN metric.
Since the near-zone PN metric that we use is only
valid at distances more than 10Mi from the black
hole with mass Mi (Yunes & Tichy 2006; Yunes et al.
2006; Johnson-McDaniel et al. 2009), then—in the equal
mass case considered here—we have rmin ≥ 10M

2 +
max(a(t))/2 = 5M + a0/2 = 15M . Shi et al. (2011)
found that an inner radial boundary located at rmin ∼<
1.1a was sufficiently far away from the gap and deep in
the potential as to not significantly alter the develop-
ment and evolution of the surface density peak at the
edge of the gap. These two constraints justify our choice
of rmin = 15M = 0.75a0 and suggest that our inner
boundary condition may begin affecting the gap’s evo-
lution when a(t) ∼< rmin/1.1 ≃ 13.6M ≃ 0.68a0, which
occurs after approximately t = 51235M in RunIn . We
set rmax = 260M = 13a0 to encompass the initial torus.
All cells are advanced in time with the same time in-

crement (∆x0 = ∆t), which itself changes in time; ∆x0 is
set to 0.45∆tmin, where ∆tmin is the shortest cell crossing
time of any MHD wave over the entire domain.
Boundary conditions were imposed through assign-

ment of primitive variables and Bi in ghost zones. Out-
flow boundary conditions are imposed at r = rmin and
r = rmax which amounts to extrapolating the primitive
variables at 0th-order into the ghost zones. Additionally,
ur is set to zero—and ũi recalculated—whenever it points
into the domain at r = rmax. We note that we attempted
to implement a similar condition on ur at r = rmin,
but found it to be unstable during the earliest part of
the simulation. Even though it was successfully used in
MacFadyen & Milosavljević (2008) and Shi et al. (2011),
we found that this condition was inconsistent with the
tendency of negative radial pressure gradients develop-
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ing ahead of each black hole as it moved around its orbit.
This pressure gradient moves small amounts of material
onto the grid, elevating the density just above the floor
ahead of the black holes. Even without the special condi-
tion on ur at rmin and just using 0th-order extrapolation
of the primitive variables there, we observe insignificant
amounts (≪ 1% of the total) of positive mass flux into

the domain there and a nearly flat Ṁ(r, t) profile over
rmin < r < 2a with no noticeable artifacts near rmin

(e.g., Figure 7).

3.4. Thermodynamics

Depending on internal properties of the gas (e.g., den-
sity, accretion rate), the disk may or may not be opti-
cally thin, geometrically thin, or have a constant aspect
ratio H/r. As these disk characteristics are sensitive to
the assumed initial conditions and thermodynamics of
the system, we therefore must select which kind of disk
to model a priori and verify the consistency of our as-
sumptions a posteriori. We chose to model a disk with
intermediate thickness (H/r = 0.1) in order to both ad-
dress the fact that binary’s torque will likely heat the
gas efficiently and our expectation that the disk will be
dense, optically thick and radiating efficiently.
We chose the ideal-gas “Γ-law” equation of state to

close the MHD EOM: P = (Γ− 1) ρǫ. We set Γ = 5/3,
which reasonably well describes the behavior of a plasma
whose specific thermal energy is smaller than an elec-
tron’s rest-mass energy (i.e. it is not relativistically hot).
The gas is cooled to a target entropy, the initial entropy
of the disk, at a rate equal to

Lc =
ρǫ

Tcool

(

∆S

S0
+

∣

∣

∣

∣

∆S

S0

∣

∣

∣

∣

)

, (23)

where ∆S ≡ S−S0 and Tcool = 2π (r/M)
3/2

is the cool-
ing time, which we approximate as the Newtonian period
of a circular equatorial orbit at radius r. Our proce-
dure is similar to those used by Noble et al. (2009) and
Penna et al. (2010). The term in the parentheses acts as
a switch ensuring that Lc ≥ 0 always, and is zero when
the local entropy, S = p/ρΓ, is below the target entropy,
S0 = 0.01, which is the constant value used in the initial
data’s torus. Hence, the cooling function should release
any heat generated through dissipation since the initial
state. We do not cool unbound material—i.e. fluid ele-
ments that satisfy (ρh+ 2pm)ut < −ρ—since we do not
want to include cooling that results from application of
density or pressure floors. Since Lc is the cooling rate
in the local fluid frame, its implementation in the EOM
must be expressed in the coordinate frame:

Fµ = Lcuµ . (24)

Another advantage of the cooling function is
that it provides us with a proxy for bolomet-
ric emissivity that is consistent with the disk’s
thermodynamics—unlike a posteriori estimates of syn-
chrotron and/or bremsstrahlung luminosity that have
typically been made in numerical relativity simulations
(e.g., Bode et al. (2010); Farris et al. (2010, 2011)). We
will use Lc to make predictions of the total luminosity
from circumbinary disks. These predictions are made by
integrating Lc over the domain in the coordinate frame;
we expect to verify their accuracy using full GR ray-
tracing in future work.

4. RESULTS

4.1. Approximate Steady State

At the beginning of both simulations, orbital shear
transforms part of the radial component of the mag-
netic field to toroidal, creating a laminar Maxwell stress.
Meanwhile, in the same region, the magnetorotational in-
stability grows, its amplitude exponentially growing on
the local dynamical timescale, ≃ 500M at the initial in-
ner edge of the disk, r = 60M . The turbulence in the
inner disk reaches nonlinear saturation at t ≃ 10000M .
Under the combined influence of the initial laminar and
later turbulent Maxwell stress, matter flows inward (see
Figure 4).

Fig. 4.— Color contours of log Σ(r) as a function of time. The
scale is shown in the color bar. The black dashed curve shows
2a(t). (Left) RunIn . (Right) RunSS .

4.1.1. Surface density

Soon after t ≃ 10000M , the inward flow begins to pile
up at r ≃ 50M , between two and three times the binary
separation (the dashed line in both panels of Figure 4
marks the location of 2a(t) in order to guide the eye).
We define the surface density Σ as

Σ(r, φ) ≡
∫

dθ
√−gρ/

√

gφφ(θ = π/2); (25)

when we quote it as Σ(r), that denotes an azimuthal
average of equation (25). In later discussion, we will
sometimes normalize the surface density to Σ0, the max-
imum surface density in the initial condition; in code-
units Σ0 = 0.0956. In RunSS , Σ(r ∼ 2a) grows steadily
for the duration of the simulation, but after t ≃ 20000M ,
the logarithmic rate of growth (i.e., d lnΣ(r)/dt) grad-
ually becomes slower and slower. Because a number
of azimuthally-averaged properties like Σ(r) all become
steadier after t = 40000M , we call the period from then
until the end of RunSS the “quasi-steady epoch”. For
the same reason, we began the binary orbital evolution
of RunIn at that time.
Once this quasi-steady state is reached, Σ(r) rises

sharply from the inner boundary at r = 16M to r ≃
50M , initially ∝ r2.5, but at late times in RunSS , ∝
exp(3r/a) (Figure 5). At first, the azimuthally-averaged
surface density profile forms a relatively flat plateau at
radii greater than 50M ≃ 2.5a, but by t = 30000M , a
distinct local maximum appears at r ≃ 50M and persists
for the remainder of the simulation. This maximum is
noticeably asymmetric in the sense that |dΣ/dr| is always
considerably smaller in the disk body (i.e., r > 2.5a) than
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Fig. 5.— Σ(r/a) every 1000M in time from t = 30000M to the
end of the simulation. Time increases from violet color to red. The
dotted curve shows the initial condition. The dashed curve shows
the average of the colored curves. (Left) RunIn , where the time
span extends to 53000M . Note that in this simulation a decreases
after t = 40000M , so that a fixed value of r/a corresponds to a
progressively smaller radial coordinate after that time. (Right)
RunSS , where the time span extends to 76000M . The binary
separation is fixed throughout this simulation.

in the gap region inside r = 2a (Figure 5). This behav-
ior resembles closely what has previously been seen in
the Newtonian regime (e.g., MacFadyen & Milosavljević
(2008); Shi et al. (2011)).
By construction, the behavior of RunIn is identical to

that of RunSS up to t = 40000M , when the binary in-
spiral was begun. In fact, at large radius, the behavior
of the surface density profile in RunIn continues to be
very similar to that of RunSS even after the binary be-
gins to shrink. Near the surface density peak and at
smaller radii, however, things change. In RunIn , the lo-
cation of the peak moves inward as the binary becomes
smaller, and the slope of the disk’s inner edge becomes
noticeably shallower as the inspiral accelerates. Com-
paring the curve of the dashed line in the RunIn panel
of Figure 4 to the curving edge of the colors denoting
higher surface density, one can see that the location of
the disk’s inner edge follows the evolution of the binary
until shortly before the end of the simulation.

Fig. 6.— Color contours of surface density in units of Σ0 as a
function of radius and azimuthal angle in RunSS at four different
times in two different scales: (Left) Logarithmic color scale em-
phasizing the streams from the disk toward the binary members.
(Right) Linear color scale emphasizing the growth of asymmetry
in the inner disk. In both panels, the times shown are t = 40000M
(upper-left), t = 51963M (upper-right), t = 63926M (lower-left),
and t = 75890M (lower-right).

However, speaking in terms of azimuthally-averaged
surface density obscures an important aspect of circumbi-
nary disks: near and inside their inner edges, their struc-
ture is generically far from axisymmetric. In Figure 6,
we show Σ(r, φ) at t = 40000M . As mentioned previ-
ously, at radii smaller than ≃ 2a ≃ 40M , there is rela-
tively little matter. The reason this gap forms is that,

unlike a time-steady, axisymmetric potential, the time-
dependent quadrupolar potential of the binary does not
conserve either the energy or the angular momentum of
test-particles. Consequently, closed orbits do not exist,
and torques driven by the binary can rapidly expel some
matter to the outside, while matter on other trajectories
can be forced inward (Shi et al. 2011). As a result, even
though the rate at which matter enters the gap is compa-
rable to the outer-disk accretion rate, at any given time,
relatively little matter can be found in the region within
≃ 2a, and the matter that is present follows trajectories
with little resemblance to stationary circular orbits. In-
stead, a pair of streams leave the inner edge of the disk
and curve inward toward each member of the binary.
Part of their flow gains enough angular momentum to
return to the disk, but part crosses the inner simulation
boundary, traveling toward the domain of the binary.
In addition, several tens of binary orbits after mat-

ter begins to pile up at r ≃ 2.5a, a distinct “lump”
(as Shi et al. (2011) called it) forms in the region of
the surface density peak. The density contrast between
this lump and adjacent regions grows steadily in time.
Thus, despite the relatively slow variation of azimuthally-
averaged disk properties during the period we call “quasi-
steady”, the “lump” continues to evolve secularly. Al-
though RunSS was not continued long enough to see this
effect, Shi et al. (2011) found that the eccentricity of the
lump’s orbit also grows slowly.

4.1.2. Accretion rate, internal stresses, and angular
momentum budget

Fig. 7.— Time-averaged accretion rate during four equally
spaced segments from t = 30000M (black) till the end of RunSS .
The curves becomes progressively lighter in shade as time advances.

It is also useful to characterize the global dynamics of
circumbinary disks in terms of the radial dependence of
the net mass flow, i.e., the accretion rate as a function
of radius. We show in Figure 7 how this quantity slowly
evolved during the quasi-steady epoch of RunSS by di-
viding the time from 30000M until the end of the simu-
lation at 76000M into four segments and averaging over
each one separately. The accretion rate is constant as
a function of radius only inside the gap region, at most
times increasing gradually outside r ≃ 2a. During the
first part of this period, the accretion rate rises steadily
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to radii beyond 5a, but after t ≃ 50000M , the accretion
rate in the outer disk gradually falls. At the end of the
simulation, Ṁ(r) is actually about a factor of 2 greater
at r ≃ 3a than anywhere else. Averaging over the en-
tire quasi-steady epoch, the rate at which mass passes
through the inner boundary is a bit less than half the
accretion rate at r = 5a. Although the first analytic
theories of circumbinary disks (Pringle 1991) assumed
that no accretion would pass the inner edge of such a
disk, Newtonian simulations, both purely hydrodynamic
(MacFadyen & Milosavljević 2008) and MHD (Shi et al.
2011), have generally seen leakage fractions of a few tens
of percent; our fraction is thus only somewhat greater
than previously found.

Fig. 8.— Log10 of the azimuthally-averaged plasma β parameter
at four times during RunSS .

As mentioned earlier, Maxwell stresses due to cor-
relations induced in MHD turbulence by orbital shear
dominate angular momentum transport within accretion
disks. Because the ratio of Maxwell stress to magnetic
pressure, 2〈B(r)B(φ)〉/〈B2〉, is fixed (Hawley et al. 2011)
at ≃ 0.3–0.4 in a point-mass potential (here the nota-
tion X(µ) denotes the magnitude of the µ-component of
four-vector X projected into the fluid frame), the stress
is linearly proportional to the magnetic pressure. A use-
ful measure of the strength of magnetic effects is there-
fore the plasma β ≡ 〈p〉/〈B2〉. In most previous ac-
cretion disk simulations, this quantity is ∼ 100 in the
midplane and drops to ∼ O(1) a few scale-heights out of
the plane. We show its dependence on position in the
poloidal plane at several times during the quasi-steady
epoch of RunSS in Figure 8; to be more precise, we show
the ratio of the time- and azimuthally-averaged gas pres-
sure to the similarly averaged magnetic pressure. As
that figure illustrates, the level of magnetization is rather
larger than usual (i.e., β is smaller than usual), but grad-
ually diminishes over time. At t = 30000M , β ≃ 1 in the
midplane at r ∼ 3–5a and ≃ 3 in the region of the surface

density peak (r ∼ 2–3a); by the end of the simulation, it
is ∼> 10 in the disk body for the whole range 2a < r < 5a
and reaches as much as ≃ 30 in the lump.
Ever since the work of Shakura & Sunyaev (1973), it

has been popular to measure the vertically-integrated,
azimuthally-averaged, and time-averaged internal disk
stress in units of the similarly integrated and averaged
pressure. In order to avoid unphysical pressures found
in the unbound regions, we computed the stresses and
pressures only in bound material. Outside r ∼ 4a, where
the disk resembles an ordinary accretion disk, we find
that the Maxwell stress alone has magnitude ≃ 0.3–0.5
in these units. This is roughly 3–5 times larger than the
stress levels found in general relativistic simulations of
MHD flows in the Kerr metric (Krolik et al. 2005). In
the gap region, the ratio of Maxwell stress to pressure
rises about a factor of 2, while the Reynolds stress in
the gap rises dramatically (as also found by Shi et al.
(2011)). These large Reynolds stresses are entirely due
to the strong binary torque, which pushes part of the
inflowing streams back out to the disk with additional
angular momentum.
An overview of angular momentum flow in the sys-

tem can be gleaned from Figure 9, in which we show the
radial derivatives of the time-averaged angular momen-
tum fluxes integrated on shells, i.e., the time-averaged
torques due to the several mechanisms acting. Several
important points stand out in this figure. The first is
that the binary torques are delivered primarily in the
gap region a ∼< r ∼< 2a. The torque density dT/dr peaks
at r ≃ 1.45a, and the region surrounding that peak dom-
inates the integral over all radii. Moreover, all these
torques are positive in net, but they are locally nega-
tive both at small radii (r ∼< a) and at large (r ∼> 1.9a).
Thus, most of the angular momentum the binary gives
the disk is delivered in the gap, where the gas density is
very much lower than in the disk proper. This point has
previously been emphasized by Shi et al. (2011). Second,
that angular momentum is conveyed to the disk proper
by fluid flows, i.e., Reynolds stresses. That is why the
Reynolds stress is large and positive from r ≃ 1.8a to
r ≃ 2.5a. Outside those regions, Maxwell stress, which
always acts so as to remove angular momentum from the
gas and carry it outward, dominates the internal stresses.
Finally, the net angular momentum change at any given
radius is generally positive in the inner disk because mat-
ter continues to pile up between r ≃ 2a and r ≃ 5a
throughout the simulation.

4.1.3. Disk thickness

We close this section by commenting on the disk thick-
ness H/r [defined in Equation (18)], a parameter that
will play an important role during the period when the
binary orbit evolves. Our initial data and cooling func-
tion were chosen so as to keep H roughly constant over
time at a fixed ratio to the local radius: H/r ≃ 0.1.
However, although the gas temperature stayed very close
to the target entropy at all radii r > 2a, and the ratio
H/r did stay nearly independent of radius, its value first
rose to ≃ 0.15 and then fell slightly (to ≃ 0.12 by the
end of the simulation). The departure from the predic-
tion of simple hydrostatic equilibrium was proportional
to how much the magnetic pressure contributed to sup-
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Fig. 9.— Radial derivatives of the angular momentum flux due to
shell-integrated Maxwell stress in the coordinate frame (red), the
angular momentum flux due to shell-integrated Reynolds stress
in the coordinate frame (green), and advected angular momen-
tum (gold). Torque densities per unit radius due to the actual
binary potential and radiation losses are shown by blue and cyan
curves, respectively. The net rate of change of angular momen-
tum ∂r∂tJ (solid black). All quantities are time-averaged over the
quasi-steady epoch in RunSS .

port against the vertical component of gravity.

4.2. Binary Separation Evolution

At t = 40000M in RunIn , we began to evolve the bi-
nary orbit, letting it compress as gravitational radiation
removes its orbital energy. The rate of orbital evolution
is extremely sensitive to separation: ȧ/a ∝ a−4 when
a/rg ≫ 1. Consequently, even at the relatively small
initial separation assumed here (a0 = 20M), orbital evo-
lution is comparatively slow at first. However, it accel-
erates dramatically after t ≃ 50000M . By the end of
RunIn (t = 54000M), ȧ/a is quite rapid, and a ≃ 8M ,
small enough to make our PN expansion problematic.

Fig. 10.— Color contours of log Σ(r/a(t)). The scale is shown
in the color bar. (Left) RunIn . (Right) RunSS .

While the binary orbit changes relatively slowly, the
inner edge of the disk moves inward in pace with the
change in the binary separation, staying close to ≃ 2a(t)
(as shown in Figures 4 and 10) until t ≃ 50000M . How-
ever, as the orbital evolution becomes more rapid (after
t ≃ 50000M), although the inner edge of the disk contin-
ues to move inward in terms of absolute distance (Fig-
ure 4), it begins to recede in terms of r/a(t) (Figure 10).
At the end of the simulation, the disk edge has moved in
to ≃ 20M , but that is ≃ 2.5a. Simultaneous with this

Fig. 11.— Mass enclosed within several sample radii as functions
of time in RunIn . From bottom to top, the radii are r/a = 1, 1.5,
2, 3, and 4. (Left) For fixed a = a0. (Right) For time-dependent
a(t).

evolution, the slope of the inner edge also becomes gen-
tler (Figure 5). In other words, the contrast between the
surface density in the disk body and in the gap weak-
ens, particularly when considering the outer part of the
gap. As shown by the RunSS panel in Figure 10, none of
this adjustment (in r/a(t) terms) occurs without binary
evolution.
Another view of this process may be seen in Figure 11.

In that figure, we see the way matter accumulates in
the inner disk over time, at first during the quasi-steady
epoch and later during the binary orbital evolution of
RunIn . The left-hand panel shows what happens when
referred to an absolute radius scale. When the binary
begins to shrink, the quantity of matter found at small
radii grows abruptly, particularly in the original gap re-
gion: the amount of mass inside r = 40M almost dou-
bles, and the mass inside r = 20M increases by a factor
of 5 during the period of binary orbital evolution. The
right-hand panel shows the same events from a differ-
ent point of view. In this figure, we see that the mass
enclosed within small multiples of a(t) declines rapidly
as the binary’s shrinkage accelerates. For larger multi-
ples (e.g., 3a and 4a), the mass enclosed continues to rise
for a while after binary orbital evolution, but eventually
drops once the compression becomes rapid. In particular,
the mass within the gap region (i.e., r < 2a(t)) falls by
roughly a factor of 40 during the period of orbital evolu-
tion, although this ratio is in fact a bit ill-defined because
2a(t) is almost at the simulation’s inner boundary by the
end of the simulation.

Fig. 12.— Accretion rate through the inner boundary of the
simulation as a function of time. (Left) RunIn . (Right) RunSS .

The accretion rate behaves differently. It falls (see Fig-
ure 12) from ≃ 30000M–40000M , even before the binary
begins to compress. Without binary orbital evolution
(RunSS ), it levels out from ≃ 40000M–50000M , before
declining more gradually from ≃ 50000M until the end
of RunSS at ≃ 76000M . In RunIn , the onset of binary
evolution at t = 40000M leads to a continuing decrease
in the rate at which mass flows through the inner bound-
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ary that levels out only after ≃ 50000M . Although the
accretion rates in the simulations with and without bi-
nary orbital evolution decline at different times and at
different rates, the final accretion rate in RunIn , when
the binary separation has shrunk to 8M , is only 20–30%
less than at the same time in RunSS .
Another consequence of the changing relationship be-

tween disk material and the binary is a diminution in
the integrated torque when the binary compresses (Fig-
ure 13). During the initial slow stages of energy loss due
to gravitational wave emission, the binary continues to
exert nearly as much torque on the disk as in RunSS , in
which the binary orbit does not change at all. However,
once the orbital shrinkage begins to accelerate, the torque
plummets; at the end of RunIn , it has fallen to ≃ 1/5
of the value at that time in RunSS . The greater part of
this diminution in torque is due to the fact that at this
stage in the binary’s evolution, its separation diminishes
so rapidly that the region between a and 2a, where most
of the torque is expressed, moves inward faster than the
matter can follow. There is consequently much less mat-
ter on which these torques can be exerted. The connec-
tion between available matter and torque is shown clearly
in the right-hand panel of Figure 13, in which one can
easily see that for nearly the entire inspiral the torque
density at the location of its maximum (r = 1.45a(t)) is
almost exactly proportional to the surface density there.
However, there is also a smaller part due to an artifact of
the simulation. Its inner boundary lies at rmin = 15M .
As soon as a(t) becomes smaller than 15M , part of the
region in which the binary torque is applied is no longer
in the problem volume, so we cannot calculate any torque
occurring there. As shown in the right-hand panel of Fig-
ure 13, this effect becomes significant at t ≃ 5.2× 104M ,
when a(t) ≃ 13M . By the end of RunIn , a ≃ 8M , so
that nearly the entire region where the torque is exerted
(a ∼< r ∼< 2a) has left the problem volume. At that point,
even if there were significant matter there, our calcula-
tion can neither say what its mass is nor what torque it
feels.

Fig. 13.— (Left) Integrated torque as a function of time in
RunSS (black) and RunIn (grey). Total torque is shown by the
solid curves; the dotted curve shows torque in RunSS including
only the radial range r > rmina0/a2(t), where a2(t) is the orbital
separation as a function of time in RunIn . (Right) Surface density
(solid) and torque density at its peak, i.e., at r = 1.45a(t) (dashed)
in RunSS (black) and RunIn (gray).

4.3. EM Luminosity: Magnitude, Modulation

We define the (coordinate frame) cooling rate per unit
radius of the disk by

dL

dr
=

∫ √−g dθ dφLcut. (26)

During the approximate stationary state, it is best de-
scribed in terms of two separate regimes. As shown
in Figure 14, at large radius (r ∼> 2a), it is very

well described by a power-law, dL/d(r/a0) ≃ 5 ×
10−4(r/a0)

−2Σ0a0. At around r ≃ 2a, the cooling rate
per unit radius reaches a local maximum and declines
inward. This distinction neatly corresponds to two dif-
ferent mechanisms for generating the requisite heat: the
dissipation of MHD turbulence associated with mass ac-
cretion (at large radius) and the dissipation of fluid ki-
netic energy given to the relatively small amount of gas
in the gap by the binary torques (at small radius). In
fact, this identification is confirmed semi-quantitatively.
In time-steady accretion, the luminosity per unit radius
is (3/2)Ṁc4/[(r/rg)

2GM ] at radii where the local orbital
angular momentum per unit mass is large compared to
the net angular momentum flux per unit mass. Our disk
is never in inflow equilibrium, and this expression is not
exact when Ṁ is a function of radius. Nonetheless, tak-
ing it as an estimator, it predicts

dL

dr/a0
= 4× 10−4(Ṁ/0.01)(r/a0)

−2Σ0a0. (27)

As Figure 7 shows, the mean accretion rate in code units
at r = 2a in RunSS was ≃ 0.01, while Ṁ at larger radii
is typically similar or perhaps a factor of two greater.
Thus, this prediction of the luminosity profile on the ba-
sis of the time-averaged accretion rate and expectations
derived from time-steady accretion onto a solitary mass
quite accurately matches the actual luminosity profile
seen in the simulation.

Fig. 14.— Luminosity per unit radius averaged over the quasi-
steady epoch in RunSS . The dashed line shows a logarithmic slope
of -2.

Integrated over radius, the total luminosity reaches a
peak L̂ ≃ 5.5 × 10−3 at t ≃ 33000M (Figure 15), where

L̂ is the integrated luminosity in units of GMΣ0c. After
reaching this peak, L̂ falls slowly, reaching ≃ 3× 10−3 at
t ≃ 76000M in RunSS ; averaged over the entire quasi-
steady period in this simulation, it is 3.8× 10−3.
The light output from RunIn remains very close to

that in RunSS until the binary orbital evolution be-
comes rapid at t ≃ 50000M . After that time, it falls
more sharply, so that by the time at which RunIn stops,
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Fig. 15.— Luminosity as a function of time. (Grey) RunIn .
(Black) RunSS . We note that the vertical axis’ range does not
include zero in order to accentuate the curves’ fluctuations.

L̂ ≃ 2.7× 10−3; this is, however, still 2/3 the luminosity
in RunSS at the same time. As the binary shrinks, the
radial distribution of the luminosity changes in parallel,
with the peak in surface brightness moving inward. We
attribute the gradual decline in luminosity to the grad-
ual decline in accretion rate. The sharp drop in the final
stages of binary orbital shrinkage is due to the interaction
of a boundary effect with genuine dynamics. As shown
by Shi et al. (2011), gas streams flow inward from the
inner edge of a quasi-steady circumbinary disk to radii
≃ 1.2a, where they can be strongly torqued and some of
their material flung back outward toward the disk. The
outward-moving matter shocks against the disk proper at
a radius near that of the surface density peak, and the
heat dissipated in these shocks contributes significantly
to the luminosity. When the binary shrinks, this mech-
anism is weakened for two reasons. The inner boundary
of our simulation (r = 0.8a0) eventually becomes larger
than 1.2a(t); when it does, matter is no longer thrown
outward by binary torques. At the same time, however,
it is possible that the retreat of the disk’s inner edge when
measured in terms of a(t) might also lead to weaker in-
ward streams.
The fact that the energy deposited by binary torques is

ultimately radiated in the disk proper leads to a method
of estimating the relative contributions to the total lu-
minosity coming from accretion and binary torques. For
that reason, and also because the accretion rate dimin-
ishes as the region of the surface density peak is ap-
proached from larger radius, it is a reasonable approx-
imation to suppose that most of the luminosity from the
region of the surface density peak inward has its source in
the binary torques. We can therefore estimate the work
done by the torques by bounding it between L(r < 2a0)
and L(r < 3a0). On this basis, accretion would account

for ≃ 1/2–3/4 of the total (i.e., L̂ ≃ 1.8–2.9× 10−3) and

the binary torque for ≃ 1/4–1/2 (L̂ ≃ 0.9–2× 10−3).
The rest-mass efficiency of this luminosity is compa-

rable to the rest-mass efficiency due to accretion that
goes all the way to the black hole. Measured in terms
of the time-dependent luminosity relative to the time-
averaged accretion rate through the inner boundary, the
efficiency in RunSS falls from a peak ≃ 0.06 achieved for

20000M ∼< t ∼< 45000M to ≃ 0.03 at the end of this simu-
lation. There are several reasons that this efficiency is so
great even though the potential at r = 50M is an order
of magnitude shallower than the potential at the inner-
most stable circular orbit (the “ISCO”). One is that the
accretion rate in the circumbinary disk is roughly twice
the accretion rate through the inner boundary, so the lo-
cal accretion dissipation in the disk is boosted by that
same factor of two relative to the rate at which mass
passes the inner boundary. Another is that in a conven-
tional disk around a single black hole the dissipation rate
in the region just outside the ISCO is depressed relative
to larger radii because some of the potential energy re-
leased is transported outward by the inter-ring stresses.
In the Novikov-Thorne model (in which the stresses are
assumed to vanish at the ISCO), almost 40% of the total
luminosity is released outside r = 40M when the black
hole has no spin. This fraction is smaller when the spin
is greater, and may be further reduced to the degree that
the net angular momentum flux is smaller (Krolik et al.
2005). Lastly, of course, additional energy is deposited
in the disk by the work done by the binary torques.
Translating the peak cooling rate into physical units

gives

Ldisk ≃ 2.4× 1040(L̂/10−3)M6τ0 erg/s. (28)

Here τ0 is the Thomson optical depth through a disk
of surface density Σ0 and L̂ is the luminosity in code
units, i.e., 3–5× 10−3. In Eddington units, this becomes
Ldisk/LE ≃ 1.7× 10−4(L̂/10−3)τ0. Thus, for such a sys-
tem to be readily observable at cosmological distances, it
will be necessary both for the disk to be optically thick to
Thomson scattering and for the mass of the binary to be
relatively large. As a gauge of what might reasonably be
expected, we note that in a steady-state accretion disk
around a solitary black hole, the optical depth of the disk
at r/rg = 20 would be ∼ 2× 103(α/0.1)−1(η/ṁ), where
η is the usual rest-mass efficiency and ṁ is the accretion
rate in Eddington units. With this disk surface density,
the luminosity would approach that of a typical AGN
when M6 is at least ∼ 1.
If this light were radiated thermally, the corresponding

effective temperature would be

Teff ≃ 4× 104(L̂/10−3)1/4M
−1/4
6 τ

1/4
0 K, (29)

where we have assumed that the radiating area is
2π(2a)2. Thus, it would emerge primarily in the ultra-
violet for fiducial values of black hole mass and optical
depth.
The luminosity (assumed to be optically thin) exhibits

a noticeable modulation as a function of time, with peak-
to-trough contrast of ≃ 5%. Its Fourier power spectrum
shows a strong, sharp peak at a frequency 1.47Ωbin (see
Figure 16) and a weaker peak at 0.26Ωbin. The lat-
ter is the orbital frequency at the radius of the surface
density maximum, ≃ 2.4a; because the lump is located
at this radius, we call this frequency Ωlump. The for-
mer we identify with the rate at which the lump ap-
proaches the orbital phase of a member of the binary,
2(Ωbin −Ωlump) = 1.46Ωbin. When the lump draws near
one of the black holes, a new stream forms, falls inward,
and is split into two pieces, one of which gains angular
momentum, sweeps back out to the disk, and ultimately
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Fig. 16.— Fourier power spectrum of the luminosity radi-
ated during the quasi-steady epoch of RunSS . The vertical lines
represent: the orbital frequency at the surface density maximum
(dashes) and the peak in the spectrum (dots).

shocks against the disk gas. It is this process, whose fre-
quency is 1.46Ωbin, that modulates the light curve. If the
binary mass ratio were far from unity, we expect that the
modulation frequency would fall to ≃ Ωbin − Ωlump.

5. DISCUSSION

5.1. Comparison to Newtonian MHD

In many respects, the behavior we found in this post-
Newtonian regime resembles what was previously found
in the Newtonian limit (Shi et al. 2011). There is very
good agreement in the shapes of their azimuthally-
averaged surface density profiles, with any contrasts at-
tributable to their somewhat different initial conditions.
In both cases, during the quasi-steady epoch the sur-
face density at the disk’s inner edge rises ∝ exp(3r/a),
reaches a maximum at r ≃ 2.5a, and then declines to
larger radii.
At early times in both, there is a pair of streams lead-

ing from the disk edge to the inner boundary, which they
typically reach at an orbital phase slightly ahead of the
nearest member of the binary. Both also develop a strong
m = 1 asymmetry (a “lump”) in the surface density
at r ≃ 2.5a at late times. This asymmetry ultimately
causes, in both the Newtonian and post-Newtonian sim-
ulations, a single stream in the gap to become dominant.
Almost the only contrast in this regard is that the or-
bit of the lump developed a growing eccentricity in the
Newtonian case, but not in RunSS .
The level of magnetization is likewise qualitatively sim-

ilar: the mean plasma β in the Newtonian case fell from
∼ 1 at ≃ 6a to ≃ 0.3 at r ≃ 2a, while the value (av-
eraged over the quasi-steady epoch in RunSS ) in our
simulations was ≃ 1.5 at r = 6a, grew to ≃ 2.5 at the
surface density peak, and then decreased inward. The
magnetic stress-to-pressure ratio α in the disk body fol-
lows the same pattern of close resemblance. It was ≃ 0.3
in the disk body in the Newtonian case, and ≃ 0.2 in
RunSS . In the gap, the similarity was more qualitative
than quantitative: in both cases, it rose steeply into the
gap, but reached only ≃ 0.7 at r ≃ a in the PN sim-
ulation, whereas it climbed to ≃ 10 in the Newtonian
one.
Most strikingly, the luminosity estimated by Shi et al.

(2011) scales extremely well to the PN case. Shi et al.
(2011) could not directly compute the luminosity because
they assumed an isothermal equation of state. However,
they argued that the work done by the binary torques
would be delivered to the disk and ultimately dissipated
there into heat. Rewriting in our units their value for
the rate at which the torques did work on the gas gives
a luminosity of 0.018GMΣpc(a/rg)

−1/2, where Σp is the
surface density at the maximum; for our separation (a =
20M) and our surface density at the maximum (≃ 0.55
averaged over the quasi-steady epoch in RunSS ), that
becomes 2.2× 10−3GMΣ0c. This prediction agrees well
with the upper end of our estimated range for the binary
torque share of the luminosity.

5.2. Comparison to Analytic Estimates of Binary
Runaway

Milosavljević & Phinney (2005) predicted that at some
point well before the merger, the BBH should begin com-
pressing so fast by gravitational radiation that internal
stresses within the disk would not allow it to move inward
rapidly enough to stay near the binary. At the order of
magnitude level, this breakaway point would be expected
to come when the gravitational radiation time

tgr =
5

64

( a

M

)4 (1 + q)2

q
M (30)

becomes shorter than the characteristic disk inflow time

tin = α−1(H/r)−2(d lnΣ/d ln r)−1Ω−1 = α−1(H/r)−2(d lnΣ/d ln r)−

(31)
In these equations Ω is the local disk orbital frequency.
The logarithmic derivative of the surface density enters
because spreading of the inner edge is more rapid when
it is especially sharp.
With a typical estimate of the stress level, α ∼ 0.01,

the binary separation at which tgr and tin would match,
and the disk and binary might decouple is

adec = 70(d lnΣ/d ln r)−2/5

(

H/r

0.15

)−4/5

M, (32)

where the fiducial radius at which the inflow time was
computed is r∗ = 2a, and we set q = 1. Indeed, it
was this sort of estimate that led us to choose the initial
conditions for our simulation.
However, scaling to the actual parameters of our sim-

ulation leads to a considerably smaller predicted value,

adec ≃ 10[(d lnΣ/d ln r)/6]−2/5
( α

0.2

)−2/5
(

H/r

0.15

)−4/5

M,

(33)
which is much closer to what is found in RunIn . Thus,
the substantially stronger magnetic stresses than pre-
dicted by usual α-based estimates lead to decoupling at
a much smaller binary separation. Nonetheless, in the
end the inward motion of the disk is limited by angular
momentum transport, so once the magnitude of those
stresses are known, adec can be estimated quite well by
this means.
On the other hand, the meaning of the term “binary

runaway” should also be made more nuanced. As we
have seen, the accretion rate through the simulation in-
ner boundary decreases as the binary shrinks, but almost
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the same decrease in accretion rate occurs when the bi-
nary does not shrink. Moreover, the continuing advance
of the disk during the period of orbital evolution brought
matter rapidly inward. The amount of matter within
30M rose by about a factor of 4 while the binary shrank,
so that almost as much matter could be found within
that radius as had been within 40M at the beginning of
the binary orbital evolution. Thus, acceleration of binary
orbital evolution does lead to a state in which the surface
density at r < 3a is smaller than would be expected if
the orbital evolution were slower, and this diminution in
the mass close to the binary does lead to consequences
such as sharply diminished torque (as discussed in Sec-
tion 4.2) and luminosity (see Section 4.3). On the other
hand, neither the torque nor the luminosity falls by as
much as an order of magnitude because the decoupling
of binary and disk matter is not complete. Most notably,
accretion continues at a rate only tens of percent lower
than in the absence of inspiral.
Continuing accretion into the binary orbital region has

a particularly interesting consequence. The material in
those streams should, just as happens when the binary
orbital evolution is slower, be captured into orbit around
one or the other of the members of the binary. It will
then settle into two smaller disks, one around each black
hole. In the conditions of our simulation, the inflow time
in the individual black hole disks might be only slightly
shorter than the merger time because decoupling occurs
when the binary separation is not a great deal larger than
the ISCO, even if both black holes spin rapidly. If the
circumbinary disk were cooler than in our simulation,
so that adec ≫ M , the inflow time in the smaller disks
would be shorter than that in the circumbinary disk by a
sizable ratio: ∼ 3×10−4 at decoupling if the scale heights
in the inner disks and the outer disk are the same, and
even smaller at later times. In either case, there could
be interesting hydrodynamic interaction between the two
smaller disks as the binary compresses.

5.3. Different Disk Thermal States

In terms of an ultimate comparison to observations, a
larger question is posed by the disk’s thermal state. As
just shown, the binary separation at decoupling scales
as (H/r)−4/5, so the disk’s internal pressure (H ∝ cs ∝
(p/ρ)1/2) can influence adec. For reasons of numerical
convenience, we chose parameters yielding a relatively
thick disk. Although the factors controlling the satura-
tion of magneto-rotational turbulence are still not well
understood, a scaling with disk pressure remains plausi-
ble. If the effective sound speed of the gas were lower,
decoupling might occur at rather larger binary separa-
tion, well outside the domain of relativistic orbits.
Several factors can influence the actual equation of

state of the disk. In ordinary AGN, local heating due
to accretion can make the disk radiation-dominated in-
side r ≃ 100M when ṁ ∼> 0.3 and the central mass

M > 106M⊙ (Krolik 1999). Larger central masses lead
to radiation dominance even when ṁ is smaller. When
the disk surrounds a binary, the local heating should be
similar at radii r ∼> 2a, as shown by Figure 14; the dimin-
ished accretion inside ∼ 4a is compensated by dissipation
of the work done by the binary torques and delivered to
the disk. In those circumstances, the disk scale height for

r ∼> 2a is independent of radius, giving an aspect ratio

H/r ≃ (3/2)(ṁ/η)(r/rg)
−1, where ṁ is now the local ac-

cretion rate in Eddington units. Thus, our aspect ratio of
≃ 0.15 would correspond to a nominal ṁ ≃ 0.4(r/40rg);
that is, this ṁ(r) is the mass accretion rate at r that
would, if it reached the black hole in a flow with η = 0.1,
produce that fraction of an Eddington luminosity.
Given the relatively large leakage fraction through the

inner edge of the circumbinary disk, the accretion rate
onto the two black holes will in general be smaller than
the accretion rate in the disk by only a factor of a few.
They might therefore generate a sizable luminosity with a
spectrum not too different from that of a generic AGN.
Because the density in the gap is considerably smaller
than in the disk, this luminosity may irradiate the disk,
particularly if it is relatively thick. The inner edge of the
disk could be heated by this means, as well.
Thus, there remains considerable uncertainty in the

thickness profile of a circumbinary disk surrounding a rel-
atively compact binary black hole. The particular thick-
ness we have simulated lies within that range of uncer-
tainty, but may not be generic.

5.4. Distinctive EM Signals

Given a sufficient external mass supply rate, the lumi-
nosity from the circumbinary disk alone could be great
enough to be detected, even from a cosmological dis-
tance (Section 4.3). However, until the binary separation
becomes as small as that considered here, the luminos-
ity from matter accreting onto the two individual black
holes would dominate the circumbinary luminosity by a
large ratio. In many respects, a binary black hole with
a ≫ 10M should strongly resemble a conventional AGN.
However, when the separation is as small as the ∼ 20M
scale studied in our simulations, contrasts with ordinary
AGN continua might occur due both to the additional
heating near the inner disk and the gap from ∼ 2.5a
down to ∼ a/3 in the range of radii in which a thermal
disk exists. The supplementary heating due to the binary
torques will increase the luminosity of the portion of the
disk near r ≃ 2a, but the temperature in this region is
smaller than the hottest part of the accretion flow by a
ratio ∼ (1.5rISCO/2a)

3/4, where the factor 1.5 multiply-
ing the ISCO radius is meant to account approximately
for the displacement of the temperature maximum from
the ISCO. Consequently, the additional luminosity will
appear at rather longer wavelengths than the peak of the
thermal continuum. On the other hand, radiation from
the gap region will be very different from what might be
expected from a conventional disk in those radii. The
dissipation rate is much smaller because the motions are
laminar, not turbulent; moreover, whatever light does is-
sue from that region is unlikely to be effectively thermal-
ized, and would therefore emerge at considerably shorter
wavelengths. Thus, the luminosity at wavelengths in-
termediate between those characteristic of the innermost
part of the disk and those characteristic of r ≃ 2a would
be significantly suppressed.
The periodic modulation in the heating rate of the

circumbinary disk that we have found might make its
emission easier to isolate. The key question governing
that “might” is how effectively optical depth in the disk
blurs the modulation. Our cooling function, which op-
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erates at a characteristic rate ∼ Ω(r) filters out vari-
ations on timescales ≪ Ω−1, but optical depth would
impose a rather more severe upper bound on the max-
imum effective frequency of variation. According to
Kylafis & Klimis (1987), a constant-density sphere of ra-
dius R and optical depth τ suppresses the amplitude of
a periodic signal of angular frequency ω injected at its
center by a factor ≃ 3c/(Rτω) when ωRτ/c ≫ 1. To
apply this estimator, we suppose that a stratified disk
segment with scale height H can be approximated by
a homogeneous sphere of radius R = H . For binary
separation a, the relevant orbital radius is ≃ 2.5a and
the signal frequency ω = 1.46Ωbin ≃ 1.5(GM/a3)1/2

for total binary mass M . As shown in Figure 6,
the surface density in the lump grows to be ≃ Σ0,
so we take τ = τ0. The suppression factor is then
≃ 0.024(τ0/1000)

−1(a/20rg)
1/2(H/0.15r)−1. In other

words, when the relevant region of the disk is optically
thick, the luminosity in the modulated component is in-
dependent of surface density, so that its fractional mod-
ulation decreases as the luminosity increases.
As we have discussed in section 5.3, there is also consid-

erable uncertainty in H/r, even given a disk surface den-
sity. If the disk thickness and optical depth were deter-
mined by the considerations of conventional time-steady
accretion flows around single black holes, the character-
istic cooling time τH/c can be identified with (αΩ)−1.
The fluctuation suppression factor could then be esti-
mated by ≃ 3αΩ/ω. Here the relevant orbital frequency
is Ω(2.4a) = 0.26Ωbin, while 0.74Ωbin ≤ ω ≤ 1.46Ωbin

(the upper limit applies in the equal-mass case, the lower
limit when the masses are very unequal). Thus, the sup-
pression factor estimated in this way is ≃ 0.1(α/0.2) for
equal black hole masses, rising to double that in the limit
of very unequal masses. However, this estimate is made
uncertain by the fact that the disk in the vicinity of the
surface density peak is certainly not in a state of inflow
equilibrium. In addition, just as for the other estimate,
the association of the periodic modulation with the lump
means that any estimate based on assumptions of ax-
isymmetry likely underestimates the local optical depth.
Both estimates suggest that the modulation will be

suppressed by at least a factor of several, but both are
also subject to considerable uncertainty, making the ac-
tual outcome unclear. It is worth pointing out that in
the event the modulation is detectable, the period of the
modulation would allow an estimate of the binary orbital
period. When the binary mass ratio is unity, the binary
orbital frequency is 0.68 times the frequency of the mod-
ulation; as the mass ratio departs from unity, the binary
orbital frequency should rise toward ≃ 1.36 times the
modulation frequency.
Finally, we remark that our predictions of EM sig-

nals from circumbinary disks around merging black holes
are complementary to those previously made (Bode et al.
2012) in two ways. In the previous work, the period of
EM emission began when the binary separation shrank to
8M ; that is when our calculation ends. In addition, that
effort expressly excluded the disk proper, which they de-
fined as r ≥ 16M ; in our work, that is the location of the
overwhelming majority of the emission. Our effort also
differs from previous work in this area in that we explic-
itly include radiation losses in the gas’s energy equation

and also tie the rate of radiation directly to the instan-
taneous local thermodynamic state of the gas (albeit in
only a formal way). In addition, our discussion of the ob-
servability of periodic modulation in the lightcurve takes
into account possible suppression of the variation due to
optical depth in the source.

6. SUMMARY

By describing the binary black hole spacetime at sepa-
rations of tens of gravitational radii through the PN ap-
proximation, we have been able to simulate many orbits
of fluid motion around such a system in fully relativistic
MHD. In so doing, we have demonstrated that the qual-
itative properties of circumbinary disks in such a regime
are well described by an extrapolation from their prop-
erties in the Newtonian limit: Matter piles up at ≃ 2.5a,
while smaller radii are largely cleared of mass; nonethe-
less, accretion continues through the inner gap, albeit
reduced by a factor of a few from the rate at which it is
supplied at larger radii.
At the same time, however, we have also investigated

the initial stages of strongly relativistic behavior in the
form of the disk’s response to binary orbital evolution by
gravitational wave emission. By carrying the disk’s evo-
lution through the transition from the epoch in which its
characteristic inflow time is short compared to the binary
evolution timescale all the way to the epoch in which the
binary evolves much faster than the disk, we have estab-
lished the time at which the binary “runs away” from the
disk, and more importantly, the degree to which it does
so. This decoupling causes a drop in both the torque
the binary exerts on the disk and in the disk luminosity.
However, a sizable fraction of the accretion rate at large
radius continues to makes its way to the binary through-
out this period.
The binary separation at which this decoupling occurs

is rather smaller than commonly estimated, largely be-
cause the internal stresses produced by MHD turbulence
in the disk are considerably greater than typical appli-
cations of the α-model had guessed. The actual value
of adec is sensitive to the disk’s thermodynamics to the
degree that the absolute level of the internal stresses are
proportional to the disk’s internal pressure. Because ac-
cretion continues, luminosity released when the accreting
gas reaches the black holes may illuminate the disk and
heat it. This sort of feedback has the potential to keep
the disk’s inflow rate high, self-consistently sustaining
the accretion rate.
Given the sort of accretion rates associated with AGN,

the inner regions of circumbinary disks around binary
black holes with separations of tens of gravitational radii
can be almost as bright as AGN, although there may be
identifying alterations in the shapes of their optical/UV
continua.
We have also shown that the work done on streams

passing from the inner edge of the circumbinary disk
through the evacuated gap around the binary is carried
back to the disk and dissipated there. Because the disk
generically develops a non-axisymmetric density distri-
bution at ≃ 2.5 binary separations, the dissipation rate
is modulated periodically with ∼ 5% fractional ampli-
tude. In the right circumstances, this modulation might
be detectable, although optical depth in the disk is likely
to diminish its fractional amplitude, particularly when
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the accretion rate is high enough to make the system
luminous. If this modulation can be detected, its pe-
riod would provide an estimator of the binary’s orbital
frequency with factor of 2 accuracy.
A number of our results may be sensitive to the partic-

ular parameters chosen, most importantly equal masses
in the binary, spinless black holes, and perfect alignment
between the orientation of the binary’s orbital angular
momentum and the disk’s angular momentum. More-
over, these choices can interact: for example, black hole
spins oblique to the gas orbital plane can induce changes
in that plane. Future work exploring a variety of choices
for these parameters may reveal additional effects.
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APPENDIX

HYDROSTATIONARY TORUS SOLUTIONS IN GENERAL AXISYMMETRIC SPACETIMES

Here, we describe a method for calculating axisymmetric non-magnetized gas distributions supported by pressure
gradients and rotation within an axisymmetric spacetime. We will assume a general spacetime with Killing vectors
(∂/∂φ)

a
and (∂/∂t)

a
that can be expressed in the simple form (in coordinates similar to spherical Boyer-Lindquist

coordinates):

gµν =

















gtt 0 0 gtφ

0 grr 0 0

0 0 gθθ 0

gtφ 0 0 gφφ

















, (A1)

which means that the inverse metric is

gµν =

















− gφφ

A 0 0
gtφ
A

0 1
grr

0 0

0 0 1
gθθ

0

gtφ
A 0 0 − gtt

A

















. (A2)

where A = g2tφ − gtt gφφ. We have verified that the φ-average of our PN spacetime, ĝµν , has this form to within the
accuracy of our PN procedure.
The initial state of the simulation consists of matter in axisymmetric hydrostatic equilibrium with a specific angular

momentum profile, ℓ. We start from the discussion of De Villiers et al. (2003), which is based on Chakrabarti (1985)
and other citations mentioned therein. The disk is centered about the equator of the black hole’s spin; we will
eventually assume that it is initially isentropic. The time-independent and axisymmetric Euler-Lagrange equations
reduce, essentially, to

∂ih

h
+

1

2
u2
t∂iu

−2
t − Ω

1− ℓΩ
∂iℓ = 0 , (A3)

where the angular frequency—Ω = uφ/ut—is not a simple function of the specific angular momentum—ℓ = −uφ/ut.
The 4-velocity, uµ, in our symmetry has zero components: ur = uθ = ur = uθ = 0. One can show, from the
normalization condition uµu

µ = −1, that

ut = −
[

−gtt + 2ℓ gtφ − ℓ2gφφ
]−1/2

, (A4)

and

Ω =
gtφ − ℓ gφφ

gtt − ℓ gtφ
. (A5)

The solutions assume that

Ω = η λ−q , (A6)
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where η and q are yet to be determined parameters, and λ is defined by

λ2=
ℓ

Ω

= ℓ
gtt − ℓ gtφ

gtφ − ℓ gφφ
. (A7)

We can eliminate Ω from this system by combining equations (A6) and (A7) to yield a non-linear algebraic equation
for ℓ = ℓ(r, θ) in terms of the metric:

R(ℓ) = gtφ
[

ℓ2 + λ2(ℓ)
]

− gttℓ− gφφℓ λ2(ℓ) = 0 , (A8)

where

ℓ=Ωλ2

= η λ2−q , (A9)

or

λ =

(

ℓ

η

)1/(2−q)

. (A10)

Also, we can show that

Ω= η−2/(q−2) ℓq/(q−2)

≡k ℓζ , (A11)

where k = η−2/(q−2) and ζ = q/ (q − 2).
Typically, one “solves” equation (A8) by approximating λ2 with its Schwarzschild value: λ2 ≃ −gtt/gφφ

(De Villiers et al. 2003; Noble et al. 2009; Farris et al. 2011). For our φ-averaged spacetimes, the Schwarzschild ap-
proximation is not so good7. Therefore, we need a better solution. We can solve this equation to roundoff precision
by using a Newton-Raphson scheme. To do so, we will need to know ∂R(ℓ)/∂ℓ:

∂R

∂ℓ
= gtφ

[

2 ℓ+
∂λ2

∂ℓ

]

− gtt − gφφ
[

λ2 + ℓ
∂λ2

∂ℓ

]

, (A12)

where ∂λ2/∂ℓ = 2λ2/[(2−q)ℓ]. Let us come back to equation (A3). A solution to this equation yields our disk solution.
The solution process involves integrating it from the inner disk’s edge — located at rin — to a point within the disk:

∫ h

hin

dh

h
= −1

2

∫ ut

utin

d(ut)
−2

(ut)−2
+

∫ ℓ

ℓin

k ℓζ

1− k ℓζ+1
dℓ . (A13)

With the boundary condition, hin = h(rin, θ = π/2) = 1, one can solve this integral equation for h = h(r, θ):

h =
utinf(ℓin)

ut(r, θ)f(ℓ(r, θ))
, (A14)

where ut is given by equation (A4), ℓ is found using Newton-Raphson on equation (A8), ℓin = ℓ(rin, π/2) is a boundary

value, and f(ℓ) ≡
∣

∣1− k ℓζ+1
∣

∣

1/(ζ+1)
.

We want a distribution that resembles a torus, which has a pressure maximum at some radius rp, and has finite
extent. The parameters {ℓin, q, η} determine whether we get such a solution. We would like to replace one of the degrees
of freedom with rp, however, there is not a closed-form solution for rp in terms of any of the original parameters. We
know that the fluid attains the Keplerian angular momentum at the pressure maximum (rp) as the pressure gradient
must be zero there. It means that ℓin should be super-Keplerian at the inner edge (rin), and ℓout should be sub-
Keplerian at the outer edge (rout). We therefore know that ℓin > ℓK(rin), ℓout < ℓK(rout), and ℓp = ℓK(rp), where ℓK
is the Keplerian specific angular momentum (see the next section below). However, we only have two free parameters,
and now have three constraints (if we specify all ℓin, ℓout and ℓp). It may be possible to change equation (A9) to look
like:

ℓ = η (λ− λ0)
2−q

, (A15)

and then find λ0 with this third constraint. Using these three constraints, however, does not yield a closed-form
solution for q, η, and λ0. Therefore, another Newton-Raphson procedure would be required. Hence, we relax the
constraint on ℓout < ℓK(rout), and let rout be a result of our procedure. Using λ0 = 0, we find that

q=2− log (ℓin/ℓp)

log (λin/λp)
, (A16)

η=
ℓp

λ2−q
p

, (A17)

where λp = λ(ℓp, rp) and λin = λ(ℓin, rin) given by equation (A7).
We follow the solution process based on one described in Chakrabarti (1985), and is the following:

7 When using the approximate method, we found the disk to undergo a low frequency breathing mode that dominated the early evolution
of the disk.
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1. Chose values of (rin, rp, ℓin), and derive q and η using equations (A16) and (A17);

2. Calculate λ (and then ℓ) at a new (r, θ) via Newton-Raphson (using equations (A8) and (A10)) close to the
previous location, so that the old location’s value can be used as a seed to the Newton iteration to successfully
find a solution;

3. Calculate ut via equation (A4) then h at (r, θ) via equation (A14);

The solution process progresses throughout (r, θ) space until the boundary of the disk is found, where h(r, θ) = 1.
The path we take starts at (r, θ) = (rin, π/2), moves in increasing r along the θ = π/2 line, and we test to see if h is
increasing. If h is not increasing at first, then we stop and try a different set of parameters. If h is increasing at first,
we then proceed until the outer edge of the disk is reached; this radius is denoted as rout. Then, ∀r ∈ [rin, rout], we
start from the θ = π/2 solution and proceed backward and forward in θ along constant r to find h(r, θ).
The initial torus solution used herein is parameterized by ℓin = 8.743, η = 1.961, q = 1.642, rin = 3a0 = 60M ,

rp = 5a0 = 100M , rout = 11.75a0 = 235M .

Fig. A1.— Change in total energy relative from its initial value versus time of non-magnetized tori from different runs. The first run
used the so-called “approximate method” and was evolved in a PN BBH spacetime (solid); the second run used our new and more accurate
procedure, but used the same spacetime as the first (dashes); the last used the same disk from the second run, but was evolved in the
φ-average of the other runs’ spacetime (dots). The curve for the last run (dots) oscillates with amplitude ∼ 10−8, which is why it appears
consistent with zero in this figure. All the disks share the same parameters: rin = 2a0, rp = 4a0, a0 = 30M .

General Keplerian Velocity

The stationary torus solution described in Section A requires the Keplerian, or circular equatorial geodesic orbits,
of the spacetime. Since we do not calculate ĝµν in closed form, we require equations for these orbits based on a
generalized metric of the form Equation (A1). Here, we state the equations governing the Keplerian orbits.
Keplerian orbits in our spacetime have 4-velocity, uµ = [ut, 0, 0, uφ] = ut[1, 0, 0,ΩK]. ΩK is found from the r-

component of the geodesic equation, dur/dτ = −Γr
µνu

µuν = 0, which ultimately yields

ΩK ±=
1

Γr
φφ

[

−Γr
tφ ±

√

(Γr
tφ)

2 − Γr
φφΓr

tt

]

=− 1

∂rgφφ

[

∂rgtφ ±
√

(∂rgtφ)
2 − (∂rgφφ) (∂rgtt)

]

. (A18)

ΩK − and ΩK + are the prograde angular velocity and retrograde angular velocity, respectively. The 4-velocity com-
ponents are found by the normalization condition:

ut=[gtt + 2Ω gtφ +Ω2gφφ]
−1/2 , (A19)

uφ=Ωut . (A20)

The Keplerian specific angular momentum, ℓK , is found by the relation between ℓ and Ω:

ℓ = −gtφ +Ω gφφ
gtt +Ω gtφ

. (A21)
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RESOLUTION REQUIREMENTS

Our grid resolution was chosen to adequately resolve the MRI, to resolve the spiral density waves generated by the
binary’s potential, and to involve cells that are nearly cubical. We discuss each choice in turn.
Many recent studies have explored the resolution dependence of global MHD accretion disk simulations (Hawley et al.

2011; Sorathia et al. 2011; Shiokawa et al. 2012). Hawley et al. (2011) found that many global properties of the disk
nearly asymptote with increasing resolution once the following criteria are satisfied:

N (z)
∼> 16

(

β

100

)1/2 (
βz

β

)1/2 (
Q(z)

10

)

, (B1)

N (3)
∼> 790

(

0.1

H/r

)(

β

10

)1/2 (
Q(3)

25

)

, (B2)

where N (z) is the number of cells per scale height, H , Q(z) > 10 is the recommended quality factor of the simulation,

βz ≡ 〈p〉/〈
∣

∣

√
gzzB

z
∣

∣

2〉. We use spherical coordinates, so N (θ) is needed instead:

N (z) =
H

∆z
=

H

r∆θ
=

H/r

∆θ
≡ NH/r , (B3)

where NH/r is the number of cells in the poloidal direction per scale height. We see from prior simulations (e.g.,
Noble et al. (2010)) that β ≃ 10 and βz/β ≃ 50 are reasonable for a disk in its asymptotic steady state, suggesting
that NH/r > 36. The initial condition values of β ≃ 100 and βz/β ≃ 1, however, yield a weaker constraint (NH/r > 16)
on the resolution. Thus, we setup a grid such that NH/r ≃ 36 with H/r = 0.1, our simulation’s scale height. This is

satisfied by the x(2) discretization described in Section 3.3. We also note that our condition satisfies the recommendation
of NH/r > 32 by Sorathia et al. (2011).
The more severe constraint is on the azimuthal symmetry. Both Hawley et al. (2011) and Sorathia et al. (2011)

suggest that past simulations under-resolved the azimuthal direction and that one should cover the full azimuthal
range φ ∈ [0, 2π] instead of assuming quarter- or half-circle symmetry. Since ∆φ limits the time step size, we were only
able to afford N (3) = 400 as anything larger was impractical given our computational resources at the time. We were
optimistic with this resolution, however, since the thinnest run of Noble et al. (2010) failed to satisfy Equation (B2)
yet still resolved the MRI with Q(3) > 25 throughout most of the disk’s body.
We demonstrate how well RunIn and RunSS resolve the MRI in Figures B1 - B2, where we show mass-weighted

averages of the Q(2) and Q(3) MRI quality factors:

Q(i) =
2π

∣

∣bi
∣

∣

∆x(i) ΩK(r)
√
ρh+ 2pm

. (B4)

The averages were made over x(2) in the following way:

〈Q(i)〉ρ ≡
∫ 1

0
Q(i)ρ

√−g dx(2)

∫ 1

0 ρ
√−g dx(2)

. (B5)

A mass-weighting is used to calculate 〈Qi〉ρ in order to bias the integral over the turbulent portion of the disk (the

disk’s bulk) rather than the laminar regions (e.g., corona, funnel). We find that the Q(z) constraint, i.e. 〈Q(2)〉ρ > 10,
is satisfied for all times and regions in either RunIn or RunSS except for the densest parts of the lump at late times
in RunSS . Similarly, the Q(3) constraint, i.e. 〈Q(3)〉ρ > 25, is satisfied for all times and regions in either RunIn or
RunSS except for in the lump at late times in RunSS . We further note that 〈BrBφ〉/〈pm〉 ≃ 0.3−0.35 when averaged
over the quasi-steady period of RunIn and RunSS ; this level is consistent with the asymptotic value found in resolution
studies about point masses (Blackman et al. 2008; Guan et al. 2009; Davis et al. 2010; Simon et al. 2011; Hawley et al.
2011; Sorathia et al. 2011; Shiokawa et al. 2012).
We also aim to resolve the spiral density waves generated by the binary’s time-dependent quadrupolar potential.

This means that we need about ∼ 10 cells per wavelength of the sound wave generated by the binary, λd = 2 π cs/Ωbin,
where cs = (H/r) rΩK is the speed of sound. We use the Newtonian approximates Ωbin ≃ a−3/2 and ΩK ≃ r−3/2

to simplify λd: λd ≃ 2π (H/r) r (a/r)
3/2

. We want to resolve λd in φ and r out to rp, which means that we want to
satisfy another quality condition: λd/∆r, λd/r∆φ ≃ Qd, where Qd will be the target number of cells per spiral density
wavelength. Using the grid specifications described in Section 3.3, it is easy to show that the resolution constraints
become:

N (1) ≃ 305

(

rp/a0
5

)3/2 (
0.1

H/r

)(

ln (rmax/rmin)

ln (13/0.75)

)(

Qd

6

)

, (B6)

N (3) ≃ 671

(

0.1

H/r

)(

rp/a0
5

)3/2 (
Qd

6

)

. (B7)
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Fig. B1.— 〈Q(2)〉ρ from RunIn (top row) and RunSS (second row) at late times in each simulation. The times of each snapshot are
specified in the upper-right corner of each frame in units of M . The vertical and horizontal axes are in units of a0 = 20M . We note that
the t = 40000M snapshot is shared by RunIn and RunSS . The color map used to make the snapshots is given in the bottom row.

Fig. B2.— Same as in Figure B1, but for 〈Q(3)〉ρ.

We find that the spiral density wave criterion is stricter than the MRI criterion when

Qd

( r

a

)3/2

> β1/2Q(3) . (B8)

Again, we did not satisfy the constraint on azimuthal resolution with our choice of N (3) = 400. In this case, we were
reassured by evidence found by Shi et al. (2011) that found that the spiral density waves were extended over a large
azimuthal extent and required far fewer cells than expected in that direction to resolve. In practice, we find that spiral
density waves are short-lived as they propagate through the turbulent, shear flow of the disk; they are hardly ever
seen in snapshots of intrinsic quantities past r ≃ 3a0.
Since gridscale dissipation scales with the ratio of the cell extent to characteristic length scales of the physical

quantities, cells that are oblate may effectively lead to anisotropic dissipation. Because physical dissipation mechanisms
are isotropic, this effect could lead to unphysical artifacts. For this reason, we attempt to make the cells within the
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bulk of the disk—where most of the dissipation occurs—as isotropic as possible. Our runs use grids with ∆r : r∆θ :
r∆φ :≃ 3 : 1 : 3 as measured in the θ = π/2 plane. Sorathia et al. (2011) suggested that ∆r = r∆φ and ∆φ/∆θ ≤ 2;
we satisfy the former, and violate the latter by a slim margin: ∆φ should be just 2/3 times the size we use. We note
that the poloidal extent increases off the equator, so that the cells become more cubical at larger |θ − π/2|.

MASS, ENERGY, AND ANGULAR MOMENTUM BUDGETS

Space and time gradients of the accretion flow’s extensive quantities, mass (M), energy (E) and angular momentum
(J) are fundamental for understanding the disk’s evolution and structure. In stationary spacetimes, M , E, and J are
all conserved. In our (t, φ)-dependent spacetime, E and J are no longer strictly conserved. We describe here how
several functions used throughout the paper are derived from the evolution equations of mass, energy and angular
momentum.

Angular Momentum

We begin this section with the angular momentum equation because of its import to accretion physics. We follow
the notation and derivation procedure outlined in Farris et al. (2011).
An extensive quantity, J , is the integral over the spatial volume of the time component of the its associated current,

jµ: J =
∫

jt
√−g dV , where dV is the spatial volume component in the spacelike hypersurface (e.g., drdθdφ). We

are interested in the azimuthal component of the momentum as that is the dominant component of the gas’ and the
binary’s momenta. We therefore recognize that jµ = T µ

νφ
ν , and φν = (∂φ)

ν
= ∂xν/∂φ = [0, 0, 0, 1] in spherical

coordinates, which is what we use. We wish to calculate d2J/dtdr . If J is locally conserved perfectly, ∇µj
µ = 0. In

our case it will not be conserved exactly, and exploring the radial gradient of its volume integral will help us understand
how MHD stresses and the binary’s gravitational torque compete over the run of the flow. This quantity is:

d

dr

∫

(∇µj
µ)

√−g drdθdφ=∂r

∫

(

∂µ
√−g jµ

)

drdθdφ

=∂r∂tJ + ∂r∂i

∫

ji
√−g drdθdφ

=∂r∂tJ + ∂r

∫

T r
φ

√−g dθdφ , (C1)

where the last equality results from the fact that jθ is zero on the axis, and jφ(φ = 0) = jφ(φ = 2π). On the other
hand, we know from the stress-energy EOM—∇µT

µ
ν = −Fν—that

d

dr

∫

(∇µj
µ)

√−g drdθdφ=

∫

(∇µj
µ)

√−g dθdφ

=
dT

dr
−
∫

Fφ

√−g dθdφ , (C2)

where the torque density, dT/dr, can be expressed as

dT

dr
=

∫

T µ
νΓ

ν
µφ

√−g dθdφ =
1

2

∫

T µν∂φgµν
√−g dθdφ . (C3)

We remind the reader that Fν is the radiative cooling flux (see Section 3 for details).
Therefore, equating the two equations (C1) and (C2), we have

∂r∂tJ = dT
dr − {Fφ} − ∂r {T r

φ}
= dT

dr − {Fφ} − ∂r {M r
φ} − ∂r {Rr

φ} − ∂r {Ar
φ} ,

(C4)

where we have used here the shorthand

{X} ≡
∫ √−g Xdθ dφ = 〈X〉

∫ √−g dθ dφ . (C5)

Also, M r
φ, R

r
φ, and Ar

φ are—respectively—the Maxwell (MHD) stress, Reynolds stress, and advected flux of angular
momentum. We note that Mµ

ν = 2pmuµuν + pmδµν − bµbν is the EM part of T µ
ν , while (Rµ

ν +Aµ
ν) = TH

µ
ν =

ρhuµuν + pδµν is the hydrodynamic part. The Reynolds stress alone is more complicated to calculate as we have to
find the perturbation from the mean flow:

Rr
φ = ρh δur δuφ , (C6)

where
δuµ ≡ uµ − {ρuµ} / {ρ} . (C7)

We note that we include the enthalpy as it technically contributes to the stress; its contribution is insignificant,
however, for our relatively cool flow. The quantities {Rµ

ν} and {Aµ
ν} are not calculated during the simulation, but
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found approximately from other shell-integrated quantities we do calculate; {Mµ
ν}, {Fµ}, and dT/dr are calculated

as stated above during the run. One can easily show from equations (C6) and (C7) that

{Rr
φ} = {ρh δur δuφ} ≃

{

TH
r
φ

}

− {Ar
φ} (C8)

where TH
r
φ is the hydrodynamic part of T r

φ, and {Ar
φ} is calculated approximately as

{Ar
φ} ≃ {ρℓ} {ρhur}

{ρ} . (C9)

Here, ℓ = −uφ/ut as its defined in Appendix A. The approximations used to find equations (C8-C9) include: 1) h ≃ 1,
and 2) ut ≃ −1. We have demonstrated that these assumptions are valid to the few percent level in the bound portion
of the flow for our simulations described in this paper.

Energy

Torques and stresses do work on the gas, transporting angular momentum. This work can be dissipated in the
disk, changing its internal energy, which is eventually radiated away in part. Here we calculate the partitions in
which the energy can move into; this calculation is nearly identical to that for d2J/dtdr in Appendix C.1 The current
associated with E is eµ = T µ

νt
ν , where tµ is the 4-vector along time coordinate, tµ = [1, 0, 0, 0]. They are related by

E =
∫

et
√−g dV . Just as with jµ, the divergence of eµ is not exactly zero, because of the time-dependent spacetime.

Using a similar analysis as before, we get

∂r∂tE = dW/dr − {Ft} − ∂r {T r
t} (C10)

where dW/dr =
{

1
2T

µν∂tgµν
}

is the work done by the spacetime on the matter.

Mass Accretion Rate

The current jµ = ρuµ is associated with the conserved quantity M , so we have M =
∫

ρut√−g dV , and

dM

dt
= −

∫

ρur√−g dθdφ . (C11)

by using a similar technique to obtain Equation (C1).
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