Precessing binaries: Selection biases and astrophysics

R O' Shaughnessy 2010-12-03 UWM

High mass: D. Shoemaker, J. Healy, B. Vaishnav, arXiv:1007.4213Low mass: D. Brown, A. Lundgrenin prep

Outline

- Motivation: Selection biases in GW astrophysics
 - Practical context: Distinguish formation channels ...

with low-statistics, low-amplitude inferences

- Injections vs analysis: Galactic pulsars as example
- Spin and waveforms by example: BH-NS binaries
 - Kinematics, waveforms with precession
 - Intrinsic vs search-dependent selection biases
- High mass mergers (IMBH-IMBH binaries)
 - Practical context: GW signal (large spin effects) & Astrophysics (random spins)
 - Averaging vs rare aligned spins
- Low-mass precessing BH-BH ($_{M_{tot}} < 15 M_{\odot}$)
 - Practical context: L dominated; aligned-spin-sensitive searches
 - Mismatch for standard vs "extended" searches
- Low-mass precessing BH-NS ($_{Mtot} < 15 M_{\odot}$)
 - Practical context: Large misalignments, high rate, bias astrophysically useful
 - "Lighthouse model": separation of timescales
- Selection biases for astrophysics:
 - Options: analytic; zero-noise "bank simulation"; real injections?

Sadowski et al arXiv:0710.0878

Only a few detections to work with...

Injections vs analysis: Galactic PSRs

Reconstruct birthrate

NS-NS merger rate in Milky Way ROS and Kim, ApJ 715 230 (2010) Kim et al ApJ 584 985 (2003) Kim et al astro-ph/0608280 Kim et al ASPC 328 261 (2005) Kim et al ApJ 614 137 (2004)

...similarly for GW sources, **except** only LSC can inject. Different populations/assumptions?

Injections vs analysis: Analysis?

Disadvantages: Analysis: = approximate

- Hard/impossible to capture all complexity (nonstationary detector noise & environment, analysis approximations; complex pipelines)
- Can't use for *high-precision* result
- ...but

not much precision possible with few detections at low SNR

...and

Disadvantages: Injections

Real-world complexity & computation-limited # can obfuscate reasons for missed vs found
 Unsatisfying astrophysical data product

Advantages: Analysis

- Understand which parameters missed & why
- *For real results:* Tools to interpret injections, understand biases
- For astrophysicists: "Adequate" (?) models for selection biases, reinterpreting results

Spin and waveforms

Generic precession:

Misaligned binaries precess

[ACST] $\partial_t X = \Omega_X \times X \qquad X = S_{1,2}, L$...often around nearly-constant ${\bf J}$ direction

(Leading order): Propagation of L modulates waveform

J loss decreases L:

More spin-dominated More "freedom" for L at late times... less freedom early on

Other spin effect: Duration (=SNR,amplitude)

Angular momentum "barrier", more emission

Two kinds of bias: Inspiral example

Intrinsic bias

<u>Single event</u>: *One line of sight*: "Louder"/ "quieter" signal along line of sight Biases for/against some directions (=modulations!) *Overall*: Energy conservation limits increase Larger detection volume ~ requires larger dE/df <-> large kinematic effect <-> duration change; aligned spins

<u>Population</u>: #, distribution bias is ~ kinematics (<-> spin-orbit coupling) [almost true]

Search bias: (here, template mismatch w/ nonspinning; χ^2 studies underway)

Single event:

Modulations (and/or secular) not fit by search model **Highly** line of sight dependent, search dependent

Outline

- Motivation: Selection biases in GW astrophysics
 - Practical context: Distinguish formation channels ...

with low-statistics, low-amplitude inferences

- Injections vs analysis: Galactic pulsars as example
- Spin and waveforms by example: BH-NS binaries
 - Kinematics, waveforms with precession
 - Intrinsic vs search-dependent selection biases
- High mass mergers (IMBH-IMBH binaries)
 - Practical context: GW signal (large spin effects) & Astrophysics (random spins)
 - Averaging vs rare aligned spins
- Low-mass precessing BH-BH ($_{M_{tot}} < 15 M_{\odot}$)
 - Practical context: L dominated; aligned-spin-sensitive searches
 - Mismatch for standard vs "extended" searches
- Low-mass precessing BH-NS ($M_{tot} < 15 M_{\odot}$)
 - Practical context: Large misalignments, high rate, bias astrophysically useful
 - "Lighthouse model": separation of timescales
- Selection biases for astrophysics:
 - Options: analytic; zero-noise "bank simulation"; real injections?

High-mass mergers

Physical scenario:

Cluster: Runaway collisions -> supermassive stars-> two IMBHs -> merger (dynamical friction)

Short waveform: No templates; study "intrinsic" bias

Spin effects huge, if aligned:

Range increases strongly with "average aligned spin" Random spins: as if no spin (*on average*, to range) ...**but** two large, aligned spins are **rare**

Astrophysics: Detection volume for generic spins

• Method: Fit SNR vs spin vectors. Volume ~ SNR^3,

 $V(S_1, S_2) \propto \bar{\rho}_0^3 [1 + 3\mathcal{X}_1(\chi_+ \cdot \hat{z}) + 3(\mathcal{X}_1^2 + \mathcal{X}_2)(\chi_+ \cdot \hat{z})^2$ $+ 3\mathcal{X}_{02}(P\chi_+)^2 + O(\chi^3)].$

• Result: suppress linear-order term in *average* volume

$$\begin{array}{ll} \langle V(S_1,S_2) \rangle & \propto & \bar{\rho}_0^3 [1 + 3(\mathcal{X}_1^2 + \mathcal{X}_2) \left\langle (\chi_+ \cdot \hat{z})^2 \right\rangle \\ & + & 3\mathcal{X}_{02} \left\langle (P\chi_+)^2 \right\rangle + O(\chi^3)] \,. \end{array}$$

ROS et al: PRD 82 4006 (2010) [1007.4213]

Low-mass BH-BH Mergers

Physical scenario:

Origin: Isolated evolution (only at low mass)

Misalignment: SN kick produces (weak) misalignment; suppressed by BH inertia

Birth spin: large?

Precession amplitude:

In LIGO band, J dominated by L – precession amplitude small, no matter what

Aligned case: Fixable:

Intrinsic (range) bias: increases slightly (O(10%)) with "average aligned spin"

longer duration; predictable

Mismatch: Phase not like **standard** nonspinning templates...but fixable:

Extend mass ratio to "unphysical" (match > 0.95) : no new parameters!

Add "spin terms", as high-mass phenomenological

...to astrophysical accuracy, **BH-BH searches are "good enough"** (if extended) for what we are **likely to see** (most of the time)...and **predictable**

Low-mass BH-BH Mergers

Physical scenario:

Origin: Isolated evolution (only at low mass)

Misalignment: SN kick produces (weak) misalignment; suppressed by BH inertia

Birth spin: large?

Precession amplitude:

In LIGO band, J dominated by L – precession amplitude small, no matter what

Generic spins:

Intrinsic (range) bias: Same formula (vs in-band spins)...some spread, but <u>unbiased</u> Mismatch: Worse typical fits...but not many more ...worst cases are less likely to be seen (low amplitude)

...to astrophysical accuracy, **BH-BH searches are "good enough"** (if extended) for what we are **likely to see** (most of the time)...and **predictable**

Low-mass BH-NS Mergers

Physical scenario:

Origin: Isolated evolution (say) Misalignment: SN kick on 2nd-born NS produces misalignment Valuable probe of SN kick strength! Precession amplitude:

Depending on masses, spins, L or S can dominate

Understanding emission: Lighthouse model

- Steady cone: in-band, (very) simple precession
 - fixed opening angle
 - Transitional precession rare (<10% of time)
 [...and transitional precession is *easier* to match!]
- Polarized "lighthouse" (I=|m|=2) emission:
 - ~ circular on axis
 - ~ linear in orbital plane

BH-NS: Dominant

Precession: modulated wave

Secular part:

- phase:

chirps, but at different rate

depends on line of sight

(somewhat)

Modulating part:

- magnitude depends on **opening cone only**,
 - not mass, spin (once cone known)
 - good approx: precession cone opens slowly
 - model:
 - complex (fourier) amplitude z
- usually several cycles in band
 - number depends on mass, spin, NOT
 - geometry

Separation of timescales:

- ...+ use LIGO-like detectors (relatively) narrowband
- -> a) ignore increasing opening angle (usually suppressed below radiation time)
 - b) average SNR across the lighthouse
 - c) factor overlap: masses, geometry

Physically separable coordinates

Intrinsic parameters:

What: Masses and $P_J S_{1,2}$ (aligned component of spin)Why: Determine orbital kinematics (# of cycles)Determine if L or S dominated in band \rightarrow degree to which cone can open

(In-band) extrinsic parameters:

- Orientation of J ($\psi_J, heta_s$)
- Opening angle of cone (β)
- ..+ usual (tc,phic)
- Comments
 - Least-favorable orientation:
 - orbital plane vs line of sight; divides into 3 regions

Precession vs nonspinning searches

Nonspinning searches:

- Overlap:
 Can't fit oscillations
- Maximize over masses:
 Can fit any (reasonable) secular phase (in band)

Still can't fit oscillations; large mismatches

Implies: 1 precession cycle integral -> answer!

• SNR: average lighthouse power

$$\begin{split} s^{2}(\theta_{s},\beta,\psi_{J}) &= \left\langle \frac{(1+(\hat{L}\cdot n)^{2})^{2}}{4}\cos^{2}2\psi_{L}(t) + (\hat{L}\cdot n)^{2}\sin^{2}2\psi_{L}(t) \right\rangle \\ &= \left\langle \frac{(1+(\hat{L}\cdot n)^{2})^{2}}{4} \right\rangle - \left\langle (\hat{L}\cdot \hat{x})^{2}(\hat{L}\cdot \hat{y})^{2} \right\rangle \end{split}$$

• Best overlap: integrate known residual oscillation

overlap
$$\propto \max_{t,\phi} \int A \cos 2\delta \Psi$$

Amplitude (geometrical terms, psi=0)

Closed forms!

SNR

• Geometrical term (from "lighthouse" average)

$$\hat{s}^2 = \frac{1}{1024} \left[\{ c_p(x-1)^2 + x^2 \} (35y^2 + 10y - 13) + 2x \left(5y^2 + 166y + 53 \right) - 13y^2 + 106y + 451 \right]$$

- Kinematic term (from aligned spins giving longer orbits)
 - Standard SPA

Mismatch:

$$\hat{P}(\theta_{s},\beta,\psi) \equiv |I(\theta,\beta,\psi)|/s(\theta_{s},\beta,\psi)$$

$$I \equiv \begin{cases}
\frac{-\frac{3}{4}\cos 2\psi \sin^{2}\beta \sin^{2}\theta}{(2\sin\beta\mp\sin 2\beta)(\mp\cos 2\psi \sin 2\theta-2i\sin\theta \sin 2\psi)} & n_{wind} = 0\\ \frac{(2\sin\beta\mp\sin 2\beta)(\mp\cos 2\psi \sin 2\theta-2i\sin\theta \sin 2\psi)}{8} & n_{wind} = \pm 1\\ \frac{(1\mp\cos\beta)^{2}}{8}\left[\cos 2\psi(1+\cos^{2}\theta)\mp 2i\cos\theta \sin 2\psi\right] & n_{wind} = \pm 2\end{cases}$$

It works, empirically

Calculation:

Real TaylorF2 3.5 PN bank vs SpinTaylor (3.5PN) All BH-NS binary masses, spins

Figures:

2d: small error, except near special surface

3d, interactive

Success:

- SNR:
 - Good, except for: transitional-precession outliers
- Mismatch:
 - Good, except for: discrete jumps in secular phase rate, near special geometries

Mismatch error

Selection biases for BH-NS?

Selection bias: Method

Zero-noise simulations (discrete real bank) [can rescale overhead results to all-sky, etc]

Selection bias: Results

- Intrinsic: Small change (volume: 10%)
- <u>Search</u>: Can be large (volume: x2!)
 Theory ~ agrees [preliminary]
 Transitional precession does better (less modulation)

Note:

Bias largest for (some) **spin**-dominated (=certain masses, spins) Easy to wash out from injection population

Summary

Astrophysics:

- High mass: Rates "as if" no spin
- Low mass: Occasional bias.

As needed (BH-NS), correct via tabulated Monte Carlo.

Data analysts: Low mass:

- New coordinates:	Relative to J easier, never used (??)
- Worst fits found:	closed form. Targets for hierarchical (PTF) followup?
- Spin parameter biases found:	May help spin search tuning.
- Future directions: Single-detector:	single-stage χ^2 fits; real data
- Coherent bias:	So far, just single-detector formulae

Theory: Low mass:

- two-timescale expansions

HOLDING MATERIAL

BONUS SLIDES: GW features

What makes GW?

Example: Two black holes with spin (aligned)

- Like nonspinning
- Spin-orbit couplings change duration, phasing
- [Campanelli et al gr-qc/0604012]

Initial LIGO, range vs mass (m1=m2)

Both down

Both up

What makes GW?

Example: Two black holes with spin

Precession:

 $H = H_{orbit} + O(L.S) + O(S1.S2)$

J exchange between spins, L

Orbit plane & beaming rotates **modulations**

Movie: S. Hughes (gmunu.mit.edu))

Measurables?: Inspiral

 <u>Mass</u> Must match! df/dt -> mass

[mass ratio : fine structure]

Distance

$$SNR \propto \frac{M^{5/6}}{d}$$

- Orbit orientation:
 Measure beaming?...but
 - Distance-inclination degeneracy

 $\delta X/X\simeq O(1)/\rho$

significant vs beaming angle

<u>(Black hole) spin</u>

Precession Only if extreme

BONUS SLIDES: Cartoon channels

Sadowski et al arXiv:0710.0878

What about dynamical sources?

Alignment = signature!

Isolated binaries **Aligned spins**

Star forming gas

References include

- Belczynski, Kalogera, Bulik 2002; BelczynskiO' Shaughnessy et al. in prep
- + astro-ph/0610076; 0609465; 0504479

Interacting clusters' stellar mass binaries Random spin alignment

References include

- Sadowski et al 2008
- •O' Shaughnessy et al PRD 76 061504
- O' Leary et al astro-ph/0508224

BONUS SLIDES: PSR

Pulsar "injections"

NS-NS merger rate in Milky Way

ROS and Kim, ApJ 715 230 (2010) Kim et al ApJ 584 985 (2003) Kim et al astro-ph/0608280 Kim et al ASPC 328 261 (2005) Kim et al ApJ 614 137 (2004)

BONUS SLIDES: Isolated evolution

- Formation channels
- Rates
- Key uncertainties
 - Sn kicks
 - Evolutionary issues: [Initial-final mass relation (improving Ott);
 - Winds

Example: Isolated evolution

Complex process

- Outline of (typical) evolution:
 - Evolve and expand
 - Mass transfer (perhaps)
 - Supernovae #1
 - Mass transfer (perhaps)
 - Supernovae #2

Note

- Massive stars evolve faster
- •Most massive stars supernova, form BHs/NSs
- •Mass transfer changes evolutionary path of star

Models hard

- supernova
- long mass transfer

Predicted merger, GW detection rates

Mergers: <10/gal/Myr</th>[ROS et al 0908.3635]Detections: O(30/yr), aLIGO network

Formation model: Key points

• Mass transfer:

<u>Small orbit-> MT essential</u> GW radiation "fast" (< 10 Gyr) only for tight orbits

Mass transfer phenomenological:

parameterized (via energy or J) to unbind envelope

Visible connections!:

- (recycled?) Pulsar binaries
 - Good:
 - Long-lived remnants!
 - Precise measurements
 - Challenges:
 - Pulsar population statistics challenging:

many potential (time-evolving?) biases: L distrib; galaxy distrib;

beaming, B/L evolution, accn, ...

P-dP/dt diagram flow/popsyn still phenomenological

Theory: PSR-BH binaries should ~never be recycled

Example: Hulse-Taylor $au_{gw} \simeq 0.3 \text{Gyr}$ $a \simeq 2.7 R_{\odot} \ll O(10^3 R_{\odot}) \simeq R_{\text{giant}}$

• Supernova kicks

Isotropic kicks?

Hobbs vs Arzoumanian

Group: explore all

Polar?

Motivation: Spin-kick alignment?

(e.g., neutrino/B/.. kick)

For: obs claims (Lai et al 2001; Wang; Ng Romani Kaplan et al 2008); Against: Willems et al 2008 (low kicks required to fit PSR-NS e; high kicks seem required for others)

Impact for us:

huge rate reduction b/c never "kicking closer" Kuranov et al 0901.1055; Postnov & Kuranov 0710.4465 <u>Group:not explored extensively now</u>; could be

Hobbs et al

Crab motion

- Supernova kicks
- Evolution model
 - Hertzprung gap merger
 - ultracompacts survive/not
 - **big** effect on BH rate
 - Changes background LISA binary #
 - NS maximum mass
 - Bondi rate in CE; AIC

Belczynski 0811.1602

Belczynski, ROS, et al ApJ 680 129

- Evolution model
- Supernova kicks
- Winds

Strong effect on star->BH mass Recent update

- Evolution model
- Supernova kicks
- Winds
- Metallicity distribution: (input uncertainty)
 - Formation, detection rate sensitive
 - Wide distribution of conditions
 - Metallicity evolves strongly with z (Pei, Fall, Hauser)

=> typical detected binary from *highly atypical* region?

[ROS and Koparappu, 0812.0591]

Panter et al 2008