Precessing binaries: Selection biases and astrophysics

R O' Shaughnessy
2010-12-03 UWM

High mass: D. Shoemaker, J. Healy, B. Vaishnav, arXiv:1007.4213
Low mass: D. Brown, A. Lundgren in prep

Outline

- Motivation: Selection biases in GW astrophysics
- Practical context: Distinguish formation channels ... with low-statistics, low-amplitude inferences
- Injections vs analysis: Galactic pulsars as example
- Spin and waveforms by example: BH-NS binaries
- Kinematics, waveforms with precession
- Intrinsic vs search-dependent selection biases
- High mass mergers (IMBH-IMBH binaries)
- Practical context: GW signal (large spin effects) \& Astrophysics (random spins)
- Averaging vs rare aligned spins
- Low-mass precessing BH-BH ($M_{t o t}<15 M_{\odot}$)
- Practical context: L dominated; aligned-spin-sensitive searches
- Mismatch for standard vs "extended" searches
- Low-mass precessing BH-NS ($M_{t o t}<15 M_{\odot}$)
- Practical context: Large misalignments, high rate, bias astrophysically useful
- "Lighthouse model": separation of timescales
- Selection biases for astrophysics:
- Options: analytic; zero-noise "bank simulation"; real injections?

Sources of compact binaries

Sources of compact binaries

Constrain channel details:

Different mass

distributions

runaway stellar collisions

Sources of compact binaries

Constrain

 channel details:
Different spin-orbit

 alignment

Star forming gas

Small residual misalignment <-> SN kick strength

What we want [right=reconstructible bias]

1) "right \#" of sources
2) "right" spin-orbit distribution

Interacting clusters' BH binaries (all masses) Random spin alignment

Only a few detections to work with...

Birthrate reconstruction:

Intrinsic (poisson) error, best case: $1 / \operatorname{sqrt}(\mathrm{N})>\mathrm{O}(10 \%)$
Focus on large biases!

log (rate*Myr), single detector

Injections vs analysis: Galactic PSRs

Galactic pulsar-NS birthrate:

- Synthetic population:
- Assume pulsar spin, beaming
- Draw from luminosity, position distribution
- Predict \# seen in surveys vs \# available (via sky brightness, distance, sky coverage,
- Reconstruct \# available from \# seen

- Reconstruct birthrate

Injections vs analysis: Analysis?

Disadvantages: Analysis: = approximate

- Hard/impossible to capture all complexity
(nonstationary detector noise \& environment, analysis approximations; complex pipelines)
- Can' t use for high-precision result
...but
- not much precision possible with few detections at low SNR
...and

Disadvantages: Injections

- Real-world complexity \& computation-limited \# can obfuscate reasons for missed vs found Unsatisfying astrophysical data product

Advantages: Analysis

- Understand which parameters missed \& why
- For real results: Tools to interpret injections, understand biases
- For astrophysicists: "Adequate" (?) models for selection biases, reinterpreting results

Spin and waveforms

Generic precession:

Misaligned binaries precess

[ACST]

$$
\partial_{t} X=\Omega_{X} \times X \quad X=S_{1,2}, L
$$

...often around nearly-constant J direction
(Leading order): Propagation of L modulates waveform

Two kinds of bias: Inspiral example

Intrinsic bias

Single event:
One line of sight: "Louder"/ "quieter" signal along line of sight Biases for/against some directions (=modulations!)
Overall: Energy conservation limits increase Larger detection volume ~ requires larger $\mathrm{dE} / \mathrm{df}$ <-> large kinematic effect <-> duration change; aligned spins

Population: \#, distribution bias is ~ kinematics (<-> spin-orbit coupling) [almostrue]

Search bias: (here, template mismatch $\mathrm{w} /$ nonspinining; χ^{2} studies underway)
Single event:
Modulations (and/or secular) not fit by search model
Highly line of sight dependent, search dependent

Outline

- Motivation: Selection biases in GW astrophysics
- Practical context: Distinguish formation channels ... with low-statistics, low-amplitude inferences
- Injections vs analysis: Galactic pulsars as example
- Spin and waveforms by example: BH-NS binaries
- Kinematics, waveforms with precession
- Intrinsic vs search-dependent selection biases
- High mass mergers (IMBH-IMBH binaries)
- Practical context: GW signal (large spin effects) \& Astrophysics (random spins)
- Averaging vs rare aligned spins
- Low-mass precessing BH-BH ($M_{t o t}<15 M_{\odot}$)
- Practical context: L dominated; aligned-spin-sensitive searches
- Mismatch for standard vs "extended" searches
- Low-mass precessing BH-NS ($M_{t o t}<15 M_{\odot}$)
- Practical context: Large misalignments, high rate, bias astrophysically useful
- "Lighthouse model": separation of timescales
- Selection biases for astrophysics:
- Options: analytic; zero-noise "bank simulation"; real injections?

High-mass mergers

Physical scenario:

Cluster: Runaway collisions -> supermassive stars-> two IMBHs -> merger (dynamical friction) Short waveform: No templates; study "intrinsic" bias

Spin effects huge, if aligned:

Range increases strongly with "average aligned spin" Random spins: as if no spin (on average, to range)
...but two large, aligned spins are rare

Astrophysics: Detection volume for generic spins

- Method: Fit SNR vs spin vectors. Volume ~ SNR^3,

$$
\begin{aligned}
V\left(S_{1}, S_{2}\right) & \propto \bar{\rho}_{0}^{3}\left[1+3 \mathcal{X}_{1}\left(\chi_{+} \cdot \hat{z}\right)+3\left(\mathcal{X}_{1}^{2}+\mathcal{X}_{2}\right)\left(\chi_{+} \cdot \hat{z}\right)^{2}\right. \\
& \left.+3 \mathcal{X}_{02}\left(P \chi_{+}\right)^{2}+O\left(\chi^{3}\right)\right] .
\end{aligned}
$$

- Result: suppress linear-order term in average volume

$$
\begin{aligned}
\left\langle V\left(S_{1}, S_{2}\right)\right\rangle & \propto \bar{\rho}_{0}^{3}\left[1+3\left(\mathcal{X}_{1}^{2}+\mathcal{X}_{2}\right)\left\langle\left(\chi_{+} \cdot \hat{z}\right)^{2}\right\rangle\right. \\
& \left.+3 \mathcal{X}_{02}\left\langle\left(P \chi_{+}\right)^{2}\right\rangle+O\left(\chi^{3}\right)\right]
\end{aligned}
$$

Range vs aligned spin:
Ajith et al : 0909.2867
Santamaria et al : 1005.3306
Reisswig et al : 0907.0462

Low-mass BH-BH Mergers

Physical scenario:

Origin: Isolated evolution (only at low mass)
Misalignment: SN kick produces (weak) misalignment; suppressed by BH inertia
Birth spin: large?
Precession amplitude:
In LIGO band, J dominated by L-precession amplitude small, no matter what

Aligned case: Fixable:

Intrinsic (range) bias: increases slightly ($\mathrm{O}(10 \%)$) with "average aligned spin" longer duration; predictable
Mismatch: Phase not like standard nonspinning templates...but fixable:
Extend mass ratio to "unphysical" (match >0.95) : no new parameters!
Add "spin terms", as high-mass phenomenological

...to astrophysical accuracy, BH-BH searches are "good enough" (if extended) for what we are likely to see (most of the time)... and predictable

Low-mass BH-BH Mergers

Physical scenario:

Origin: Isolated evolution (only at low mass)
Misalignment: SN kick produces (weak) misalignment; suppressed by BH inertia
Birth spin: large?
Precession amplitude:
In LIGO band, J dominated by L-precession amplitude small, no matter what

Generic spins:

Intrinsic (range) bias: Same formula (vs in-band spins)...some spread, but unbiased
Mismatch: Worse typical fits...but not many more
...worst cases are less likely to be seen (low amplitude)

..to astrophysical accuracy, BH-BH searches are "good enough" (if extended) for what we are likely to see (most of the time)...and predictable

Low-mass BH-NS Mergers

Physical scenario:

Origin: Isolated evolution (say)
Misalignment: SN kick on $2^{\text {nd }}$-born NS produces misalignment
Valuable probe of SN kick strength!
Precession amplitude:
Depending on masses, spins, L or S can dominate

Understanding emission: Lighthouse model

- Steady cone: in-band,(very) simple precession
- fixed opening angle
- Transitional precession rare ($<10 \%$ of time)
[...and transitional precession is easier to match!]
- Polarized "lighthouse" ($|=|m|=2$) emission:
~ circular on axis
~ linear in orbital plane

BH-NS: Dominant part of J (vs m, S)

Precession: modulated wave

Secular part:

- phase:
chirps, but at different rate
depends on line of sight
(somewhat)

Modulating part:

- magnitude depends on opening cone only, not mass, spin (once cone known)
- good approx: precession cone opens slowly
- model:
complex (fourier) amplitude z
- usually several cycles in band
- number depends on mass, spin, NOT geometry

Separation of timescales:

...+ use LIGO-like detectors (relatively) narrowband
-> a) ignore increasing opening angle (usually suppressed below radiation time)
b) average SNR across the lighthouse
c) factor overlap: masses, geometry

Physically separable coordinates

Intrinsic parameters:
What: Masses and $\quad P_{J} S_{1,2}$ (aligned component of spin)
Why: Determine orbital kinematics (\# of cycles)
Determine if L or S dominated in band \rightarrow degree to which cone can open
(In-band) extrinsic parameters:

- Orientation of $\mathbf{J}\left(\psi_{J}, \theta_{s}\right)$
- Opening angle of cone (β)
- ..+ usual (tc,phic)
- Comments
- Least-favorable orientation:
orbital plane vs line of sight; divides into 3 regions

BH-NS: Dominant part of J (vs m, S)

Precession vs nonspinning searches

Nonspinning searches:

- Overlap:

Can' t fit oscillations

- Maximize over masses:

Can fit any (reasonable) secular phase (in band)

Still can' t fit oscillations; large mismatches

Implies: 1 precession cycle integral -> answer!

- SNR: average lighthouse power

$$
\begin{aligned}
s^{2}\left(\theta_{s}, \beta, \psi_{J}\right) & =\left\langle\frac{\left(1+(\hat{L} \cdot n)^{2}\right)^{2}}{4} \cos ^{2} 2 \psi_{L}(t)+(\hat{L} \cdot n)^{2} \sin ^{2} 2 \psi_{L}(t)\right\rangle \\
& =\left\langle\frac{\left(1+(\hat{L} \cdot n)^{2}\right)^{2}}{4}\right\rangle-\left\langle(\hat{L} \cdot \hat{x})^{2}(\hat{L} \cdot \hat{y})^{2}\right\rangle
\end{aligned}
$$

- Best overlap: integrate known residual oscillation

$$
\text { overlap } \propto \max _{t, \phi} \int A \cos 2 \delta \Psi
$$

Amplitude (geometrical terms, psi=0)

Closed forms!

SNR

- Geometrical term (from "lighthouse" average)

$$
\hat{s}^{2}=\frac{1}{1024}\left[\left\{c_{p}(x-1)^{2}+x^{2}\right\}\left(35 y^{2}+10 y-13\right)+2 x\left(5 y^{2}+166 y+53\right)-13 y^{2}+106 y+451\right]
$$

- Kinematic term (from aligned spins giving longer orbits)
- Standard SPA

Mismatch:

$$
\begin{aligned}
\hat{P}\left(\theta_{s}, \beta, \psi\right) & \equiv|I(\theta, \beta, \psi)| / s\left(\theta_{s}, \beta, \psi\right) \\
I \equiv & \begin{cases}\frac{-\frac{3}{4} \cos 2 \psi \sin ^{2} \beta \sin ^{2} \theta}{} \begin{array}{ll}
\frac{(2 \sin \beta \mp \sin 2 \beta)(\mp \cos 2 \psi \sin 2 \theta-2 i \sin \theta \sin 2 \psi)}{8} & n_{\text {wind }}=0 \\
\frac{(1 \mp \cos \beta)^{2}}{8}\left[\cos 2 \psi\left(1+\cos ^{2} \theta\right) \mp 2 i \cos \theta \sin 2 \psi\right] & n_{\text {wind }}= \pm 1
\end{array} \\
n_{w i n d}= \pm 2\end{cases}
\end{aligned}
$$

It works, empirically

Calculation:

Real TaylorF2 3.5 PN bank vs SpinTaylor (3.5PN)
All BH-NS binary masses, spins

Figures:

2d: small error, except near special surface

3d, interactive

Success:

- SNR:
- Good, except for: transitional-precession outliers
- Mismatch:
- Good, except for: discrete jumps in secular phase rate, near special geometries

Selection biases for BH-NS?

Selection bias: Method

Zero-noise simulations (discrete real bank)
[can rescale overhead results to all-sky, etc]

Selection bias: Results

- Intrinsic: Small change (volume: 10\%)
- Search: Can be large (volume: x2!)

Theory ~ agrees [preliminary]
Transitional precession does better (less modulation)

Note:

Bias largest for (some) spin-dominated (=certain masses, spins)
Easy to wash out from injection population

Summary

Astrophysics:

- High mass: Rates "as if" no spin
- Low mass: Occasional bias.

As needed (BH-NS), correct via tabulated Monte Carlo.

Data analysts: Low mass:

- New coordinates:

Relative to J easier, never used (??)

- Worst fits found:
- Spin parameter biases found:
closed form. Targets for hierarchical (PTF) followup?
May help spin search tuning.
- Future directions: Single-detector: single-stage χ^{2} fits; real data
- Coherent bias:

So far, just single-detector formulae

Theory: Low mass:

- two-timescale expansions

HOLDING MATERIAL

BONUS SLIDES: GW features

What makes GW?

Example: Two black holes with spin (aligned)

Like nonspinning
Spin-orbit couplings change duration, phasing
[Campanelli et al gr-qc/0604012]

Initial LIGO, range vs mass ($\mathrm{m} 1=\mathrm{m} 2$)

Both down
Both up

What makes GW?

Example: Two black holes with spin

Precession:

$\mathrm{H}=\mathrm{H}_{\text {orbit }}+\mathrm{O}(\mathrm{L} . \mathrm{S})+\mathrm{O}(\mathrm{S} 1 . \mathrm{S} 2)$
J exchange between spins, L
Orbit plane \& beaming rotates modulations

Movie: S. Hughes (gmunu.mit.edu))

Measurables?: Inspiral

- Mass

Must match!
df/dt -> mass
[mass ratio : fine structure]

- Distance

$$
S N R \propto \frac{M^{5 / 6}}{d}
$$

- Orbit orientation:

Measure beaming?...but

- Distance-inclination degeneracy

$$
\delta X / X \simeq O(1) / \rho
$$

significant vs beaming angle

- (Black hole) spin

Precession
Only if extreme

t/M

Nissanke et al 0904.1017

Polarlssulon sund ©pltis lnellinsfion
Beamed, polarized emission

Linser polariarklon

BONUS SLIDES: Cartoon channels

Sources of compact binaries

Sources of compact binaries

Constrain channel details:

Different mass

distributions

runaway stellar collisions

What about dynamical sources?

Alignment $=$ signature !

Isolated binaries Aligned spins

Star forming gas

References include
-Belczynski, Kalogera, Bulik 2002; Belczynski
-O' Shaughnessy et al. in prep

+ astro-ph/0610076; 0609465; 0504479

Interacting clusters' stellar mass binaries Random spin alignment

References include

- Sadowski et al 2008
-O' Shaughnessy et al PRD 76061504
O' Leary et al astro-ph/0508224

BONUS SLIDES: PSR

Pulsar "injections"

Galactic pulsar-NS birthrate:

- Synthetic population:
- Assume pulsar spin, beaming
- Draw from luminosity, position distribution
- Predict \# seen vs \# available
- Reconstruct \# available from \# seen
- Reconstruct birthrate

NS-NS merger rate in Milky Way ROS and Kim, ApJ 715230 (2010)
Kim et al ApJ 584985 (2003)

Kim et al astro-ph/0608280 Kim et al ASPC 328261 (2005)
Kim et al ApJ 614137 (2004)

BONUS SLIDES: Isolated evolution

- Formation channels
- Rates
- Key uncertainties
- Sn kicks
- Evolutionary issues: [Initial-final mass relation (improving - Ott);
- Winds

Example: Isolated evolution

Complex process

- Outline of (typical) evolution:
- Evolve and expand
- Mass transfer (perhaps)
- Supernovae \#1
- Mass transfer (perhaps)
- Supernovae \#2

> Note
> -Massive stars evolve faster
> -Most massive stars supernova, form BHs/NSs
> - Mass transfer changes evolutionary path of star

Models hard

- supernova
- long mass transfer

Predicted merger,GW detection rates

Mergers: <10/gal/Myr
[ROS et al 0908.3635]
Detections: O(30/yr), aLIGO network

log (rate*Myr), single detector

Formation model: Key points

- Mass transfer:

Small orbit-> MT essential GW radiation "fast" (< 10 Gyr) only for tight orbits

Example: Hulse-Taylor
$\tau_{g w} \simeq 0.3 \mathrm{Gyr}$
$a \simeq 2.7 R_{\odot} \ll O\left(10^{3} R_{\odot}\right) \simeq R_{\text {giant }}$

Mass transfer phenomenological:

parameterized (via energy or J) to unbind envelope

Visible connections!:

- (recycled?) Pulsar binaries
- Good:
- Long-lived remnants!
- Precise measurements
- Challenges:

- Pulsar population statistics challenging: many potential (time-evolving?) biases: L distrib; galaxy distrib; beaming, B / L evolution, accn, ...
P-dP/dt diagram flow/popsyn still phenomenological
- Theory: PSR-BH binaries should ${ }^{\sim}$ never be recycled

Formation model unknowns

- Supernova kicks

Isotropic kicks?

Hobbs vs Arzoumanian

Group: explore all

Hobbs et al
Crab motion

Formation model unknowns

- Supernova kicks
- Evolution model
- Hertzprung gap merger
- ultracompacts survive/not
- big effect on BH rate
- Changes background LISA binary \#
- NS maximum mass
- Bondi rate in CE; AIC

Belczynski 0811.1602

Belczynski, ROS, et al ApJ 680129

Formation model unknowns

- Evolution model
- Supernova kicks
- Winds

Strong effect on star->BH mass
Recent update

Belczynski et al 2009
"revised" winds

Belczynski et al 2002
"original" winds + scale factor

Formation model unknowns

- Evolution model
- Supernova kicks
- Winds
- Metallicity distribution: (input uncertainty)
- Formation, detection rate sensitive
- Wide distribution of conditions
- Metallicity evolves strongly with z (Pei, Fall, Hauser)

=> typical detected binary from highly atypical region?
Panter et al 2008

