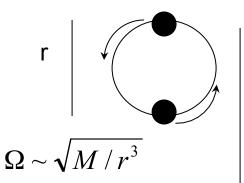
Interpreting gravitational wave measurements as constraints on binary evolution?

> R. O' Shaughnessy Syracuse, May 29 2009

Outline I : Internal

- * background
 - GW measurements of binaries: review slides (lots available)
 - Expected rates & therefore number (conservative assumptions to be described later)
 - What will we get out... put into context
- Formation model
 - Stellar ev (?) and binary ev (?)
 - Uncertainties I: Model itself
 - Evolution (CE2); SN kicks; winds (strength + character)
 - Uncertainties II: Input uncertainties
 - SFR
 - Z distribution (detection-weighted); Z evolution
- Mass distribution constraints
 - Speculation re generic constraints
- Conclusions
 - Lots of info...but hard to break degeneracies of metallicity
 - Spin alignment helpful...probably distinguishable

Outline


- GW measurements of binaries
- Predictions and uncertainties: Binary evolution

- Constraints: Mass distribution only
- Spin and alignment?
- Conclusions

Binary sources

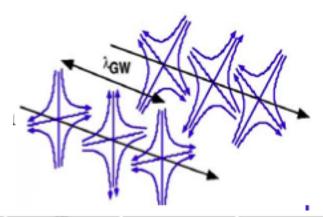
• Example:

Two black holes <u>Newtonian circular orbit</u> $f = 2f_{orb} = 2(\Omega/\pi)$ $f = 10^{3} Hz (M/8M_{o})^{-1} (r/6M)^{-3/2}$

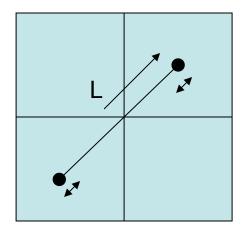
d

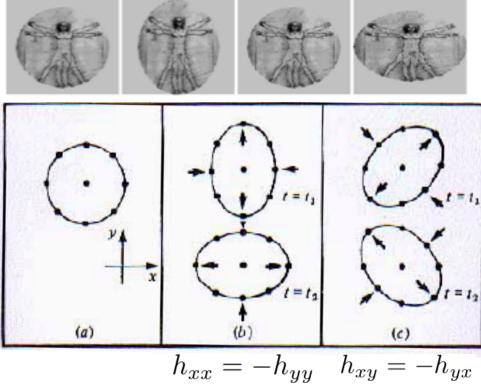
Characteristic relative length changes

~ (kinetic energy)/(distance)


$$h \sim \frac{1}{d} \frac{d^2 I}{dt^2} \sim \frac{Mv^2}{d} \sim \frac{M}{d} (n + \frac{M^2}{d})^{5/3} (d/3)$$
Sensitivity needed? (LIGO)

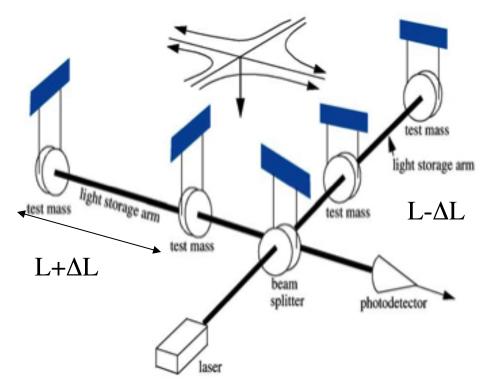
$$\Delta L \sim h L \sim 10^{-21} 4 \text{km}$$

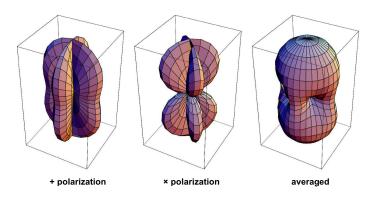

$$\sim 4 \times 10^{-16} \text{ cm}$$
laser light ~ 10⁻⁴ cm
atom ~ 10⁻⁸ cm
proton ~ 10⁻¹³ cm


Gravitational plane waves

- Stretching and squeezing
 Perpendicular to propagation
- Two spin-2 (tensor) polarizations

 $h \sim \Delta L/L$




Detecting gravitational waves

- Interferometer:
 - Compares two distances
 - Sensitive to

$$f pprox 1/t_{store}$$
 [tunable]

 Each interferometer = (weakly) directional antenna

Jay Marx, <u>Texas symposium 2006</u>

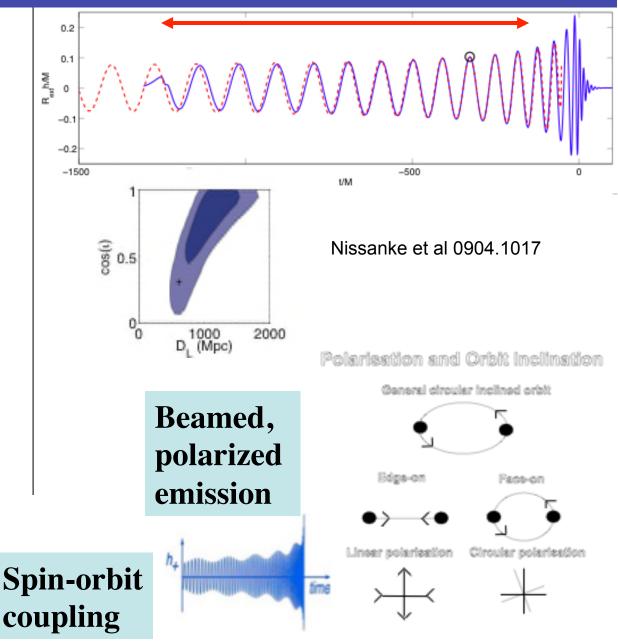
GW measurements of binaries

 <u>Mass</u> Must match! df/dt -> mass [mass *ratio* : fine structure]

 $\frac{\text{Distance}}{SNR} \propto \frac{M^{5/6}}{d}$

- Orbit orientation:
 Measure beaming?...but
 - Distance-inclination degeneracy

 $\delta X/X \simeq O(1)/\rho$


significant vs beaming angle

<u>(Black hole) spin</u>

Precession Only if extreme

Alignment test => cluster origin test?

- Possible
- Must correct
 - mild intrinsic bias for alignment
 - Significant search strategy bias against arbitrary spin

GW: Binary parameters

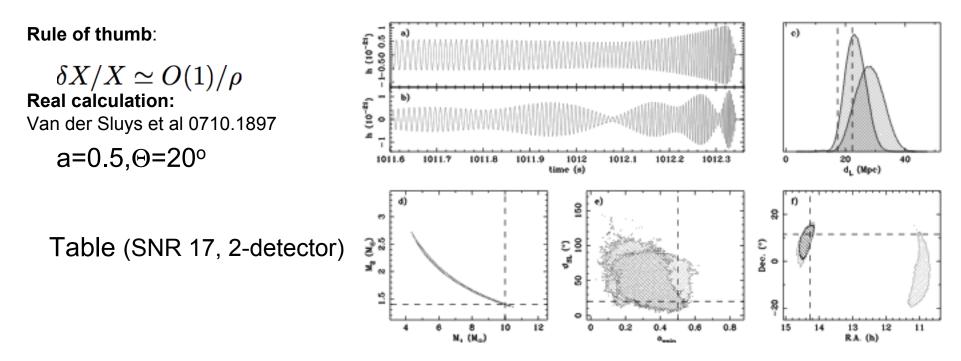
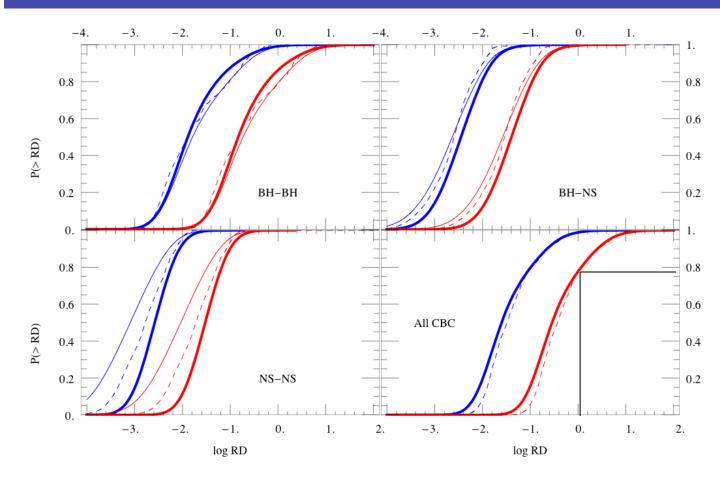



TABLE 1 INJECTION DETAILS AND WIDTHS OF THE 90%-PROBABILITY INTERVALS OF THE MCMC RUNS DESCRIBED IN THE TEXT

n _{det}	a _{spin}	θ _{SL} (°)	dL (Mpc)	M1 (%)	M ₂ (%)	M (%)	η (%)	1 ₀ (ms)	dL (%)	$a_{\rm spin}$	θ _{SL} (°)	¢. (°)	α ₀ (°)	Pos. (° ²)	Ori. (° ²)
2	0.0	0	16.0	95	83	2.6	138	18	86	0.63	_	323	_	537	19095
2	0.1	20	16.4	102	85	1.2	90	10	91	0.91	169	324	326°	406	16653
2	0.1	55	16.7	51	38	0.88	59	7.9	58	0.32	115	322	326	212	3749
2	0.5	20	17.4	53 ^b	42ª	0.90	50 ^b	5.4	46°	0.26	56	330	301 ^b	1114	3467°
2	0.5	55	17.3	31	24	0.62	41	4.9	21	0.12	24	323	269*	19.8	178 ^e
2	0.8	20	17.9	544	42*	0.864	544	6.0	56	0.16	259	325	319	1044	1540
2	0.8	55	17.9	21	16	0.66	29	4.7	22	0.15	15	320	323	22.8	182 ^e

Roever et al gr-qc/0609131 Cutler and Flanagan Van den Broeck and Sengupta Bose and Ajith 0901.4936

Expected measurements

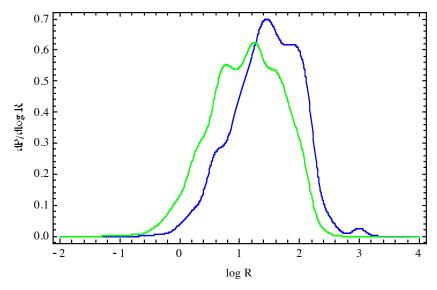
Key Blue : D_{bns} =15 Mpc Red : D_{bns} =27 Mpc

Heavy : best (errors+ constraints)

Dashed : raw simulation data

Thin : no PSR constraints

Net detection probability (all ability out of data): $P_{
m detect} = 0.34 + 0.64 \log rac{1}{7}$


Expected measurements

Advanced detectors

Isolated binary evolution:O(3-100/yr)

aLIGO network with blind search, SNR 8

<u>SNR range</u>: 8 (min) -> $8n^{1/3} \lesssim 17$

O' Shaughnessy et al 2009, in prep

sGRB coincident signals?

Overall: O(70-200/yr) all sky (above BATSE/Swift photon count cut cut)

Estimate: Roughly uniform in z

$$\begin{aligned} R_{GRB+GW} &\simeq D_{LIGO} H_o \frac{R_{GRB}}{\Delta z} \\ &\simeq 0.1 R_{GRB} \simeq O(7-20/\mathrm{yr}) \\ &\simeq 0.2 R_{GRB} \simeq O(14-40/\mathrm{yr}) \end{aligned}$$

n

cf Dietz <u>0904.0347</u> Beware short-distance/ low-L extrapolation

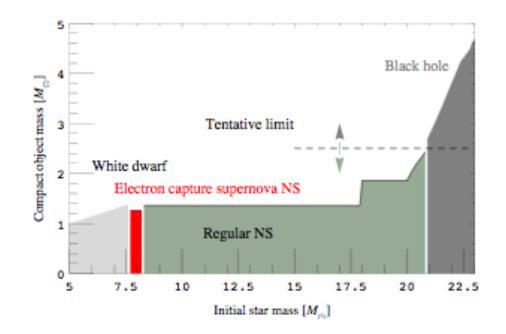
Formation model

Isolated binary evolution

Outline of typical evolution

- -Evolve and expand
- -Mass transfer (perhaps)
- -Supernovae #1
- -Mass transfer (perhaps)
- -Supernovae #2

Movie: John Rowe

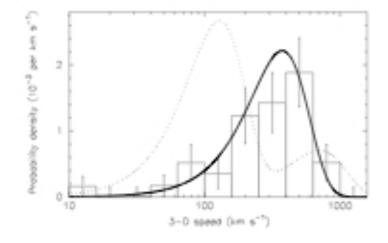

Model uncertainties

• Evolution model

Hertzprung gap merger

Others...

Bondi accn rate (& AIC) NS maximum mass


Model uncertainties

- Evolution model
- <u>Supernova kicks</u>

Isotropic kicks?

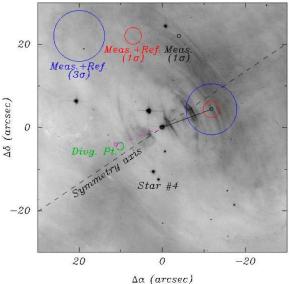
Hobbs vs Arzoumanian

Group: explore all

Polar?

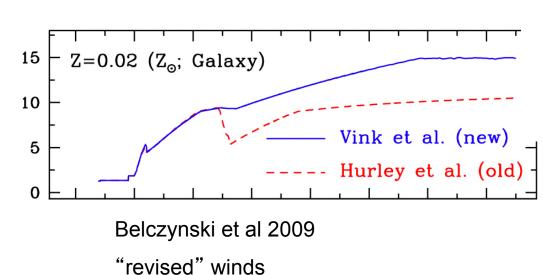
Motivation: Spin-kick alignment?

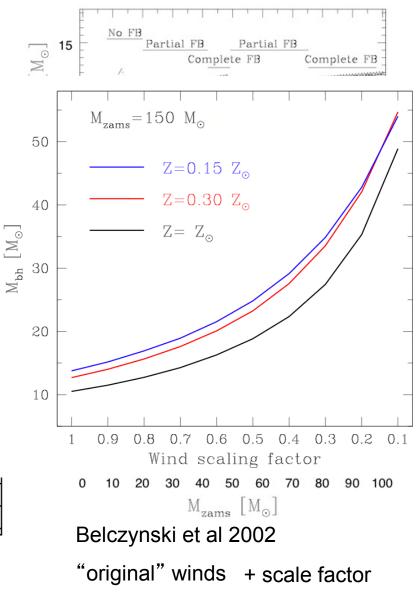
(e.g., neutrino/B/.. kick)


For: obs claims (Lai et al 2001; Wang; Ng Romani Kaplan et al 2008); Against: Willems et al 2008 (low kicks required to fit PSR-NS e; high kicks seem required for others)

Impact for us:

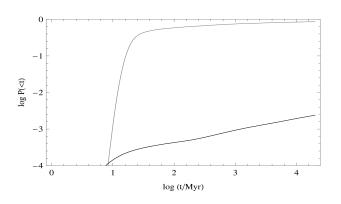
huge rate reduction b/c never "kicking closer" Kuranov et al 0901.1055; Postnov & Kuranov 0710.4465 <u>Group:not explored extensively now;</u> could be


Crab motion


Hobbs et al

Model uncertainties

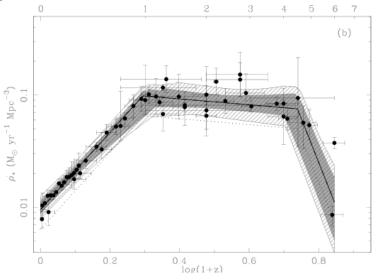
- Evolution model
- Supernova kicks
 - Winds
 Strong effect on star->BH mass
 Recent update



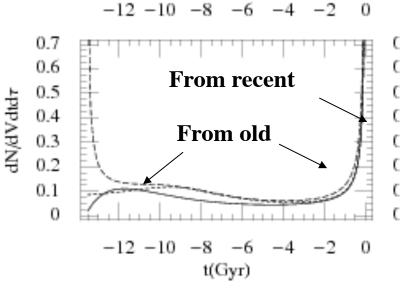
Input uncertainties

Star formation history

- Normalization nearby
- Normalization at z ~ 1
 - + long merger delays



log [P(<t)] (cumulative) NS-NS : Gray


• More from **short** delays (extremely short in example)

BH-BH : Black

• mostly from **long** delays (Gyr) (note *log* scale)

Hopkins & Beacom ApJ 651 142 2006 (astro-ph/0601463): Fig. 4

Plot: Birth time for present-day mergers

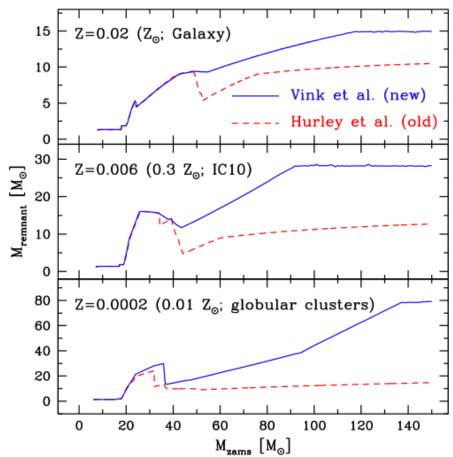
Binary fraction

Abt 1983; Duquennoy and Mayor 1991;

Lada 2006

Input uncertainties

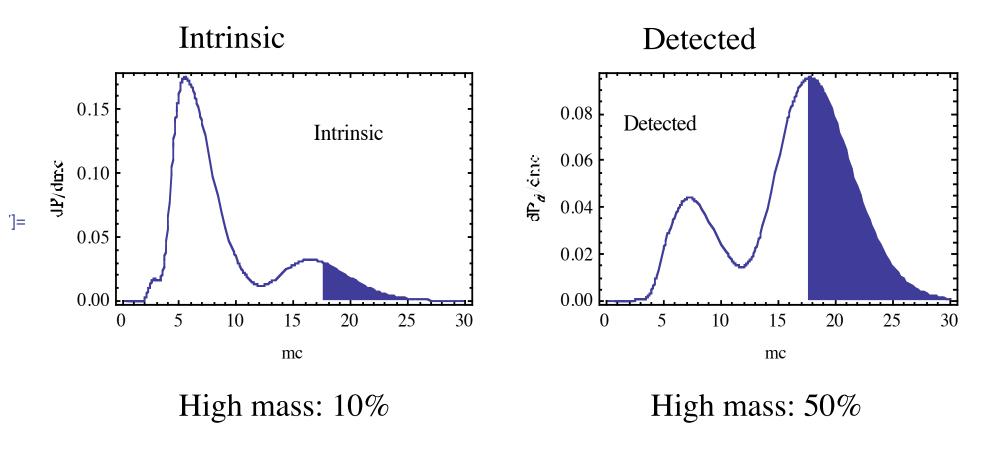
Metallicity


 BH-BH progenitor observed in low-Z enviroment (IC 10 X-1) (Bulik et al 0803.3516)

• BH mass, via winds, sensitive to Z (e.g., Belczynski et al 0904.2784)

Metallicity evolves significantly over time + long merger delays

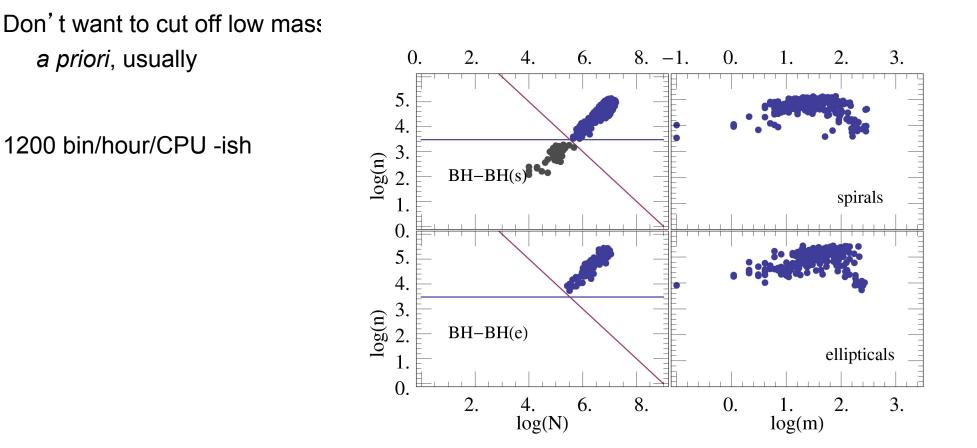
and metallicity distribution even now


....expect atypical/low-Z environments to dominate detection rate?

Belczynski et al 0904.2784

Practical challenges

Detection-weighted bias...



...makes BH-BH important, but ...

Practical challenges

BH-BH statistics require long computations

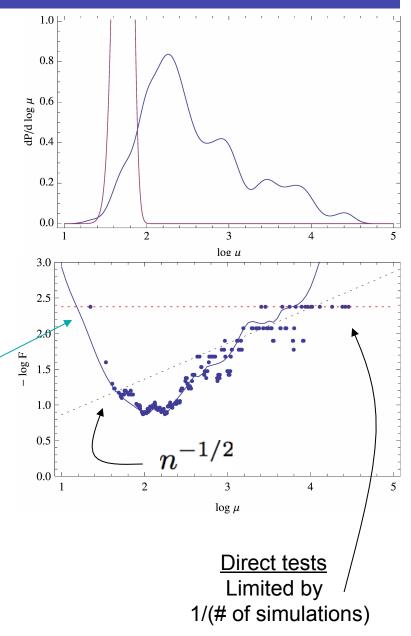
IMF -> rare, but

Model-data comparisons

Number only

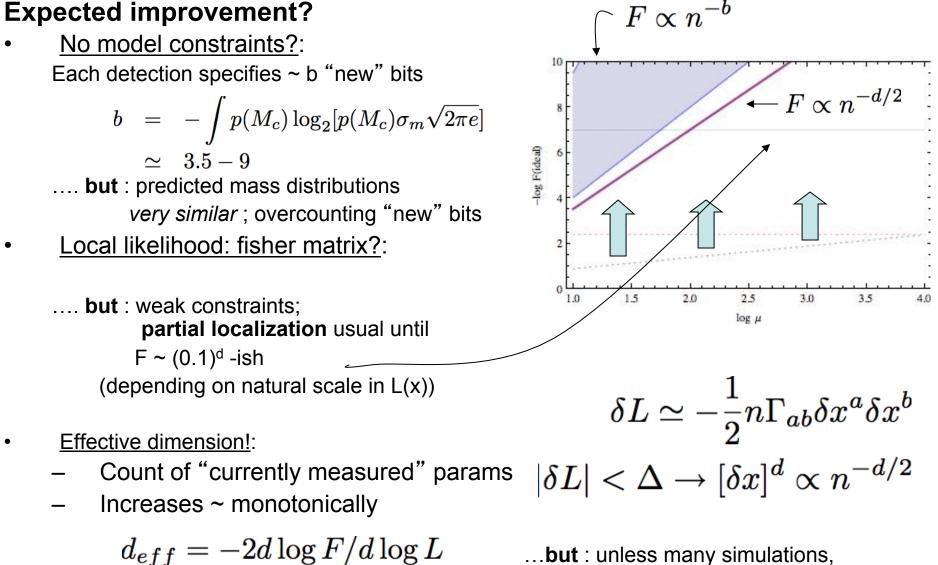
Method:

- Try each model H_k (= many trials of 'n')
- Ambiguity function
 - P(k|q) : poisson-ish

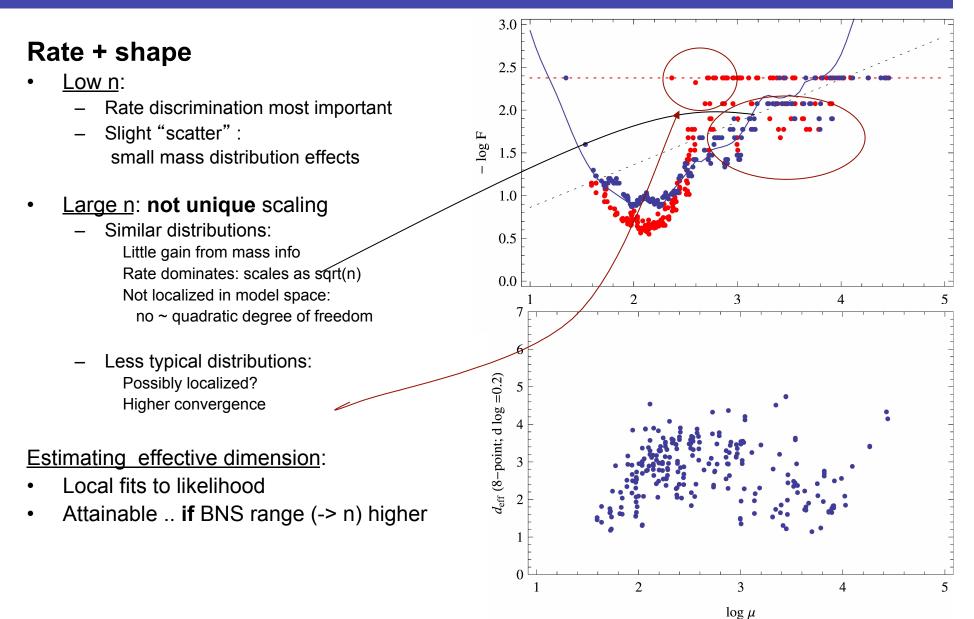

Outputs:

- *Model fraction left*: F(k) (90% probability) Intuition: F ~ Really:

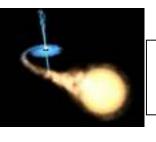
 - accuracy + how $n_{\rm other}^{-1/2}$ accuracy + how $n_{\rm other}^{-1/2}$
 - very high, low rates excluded


Comments:

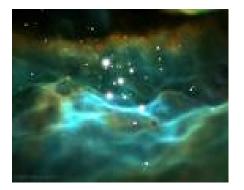
Many uncertainties not added here: simulation accuracy (monte carlo); star formation rate; metallicity; "fuzzy" detection surface realistic detection issues (waveform model systematics; calibration; ...)


Model-data comparisons

Expected improvement?


bound below

Model-data comparisons



Spin?

Alignment = signature!

Isolated binaries **Aligned spins**

Star forming gas

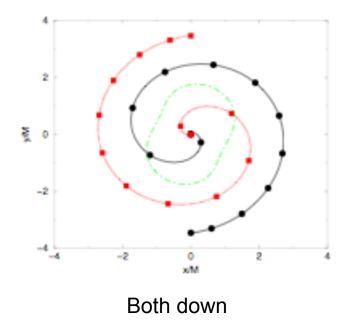
References include

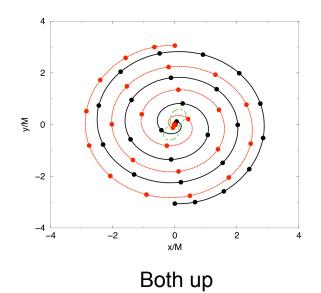
•Belczynski, Kalogera, Bulik 2002; Belczynski •O' Shaughnessy et al. in prep

+ astro-ph/0610076; 0609465; 0504479

Interacting clusters' stellar mass binaries Random spin alignment

References include

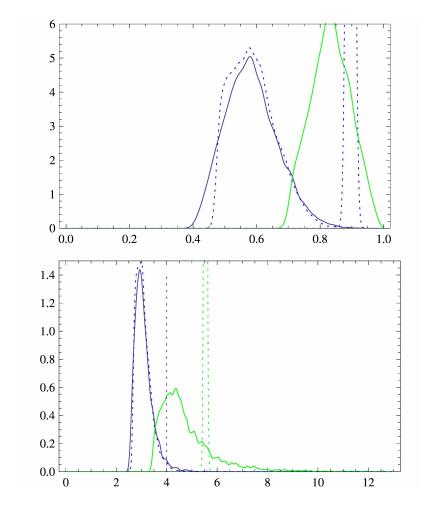

- Sadowski et al 2008
- •O' Shaughnessy et al PRD 76 061504
- O' Leary et al astro-ph/0508224


Spin alignment test

Qualitatively: Duration

Longer waveform <-> longer hangup <-> spins aligned


Campanelli et al gr-qc/0604012



Spin alignment test?

Example: Ringdown

Spin alignment test?

Example: Inspiral waves (beta, sigma)

$$\begin{split} \psi_f(t_f) &= 2\pi f t_{\rm ref} - \phi_{\rm ref} + \psi_N \sum_{k=0}^5 \psi_k (\pi m f)^{(k-5)/3} \\ \psi_N &= \frac{3}{128\eta}, \quad \psi_0 = 1, \quad \psi_1 = 0, \\ \psi_2 &= \frac{5}{9} \left(\frac{743}{84} + 11\eta \right), \quad \psi_3 = -16\pi, \\ \psi_4 &= \frac{5}{72} \left(\frac{3058673}{7056} + \frac{5429}{7}\eta + 617\eta^2 \right), \\ \psi_5 &= \frac{5}{3} \left(\frac{7729}{252} + \eta \right) \pi + \frac{8}{3} \left(\frac{38645}{672} + \frac{15}{8}\eta \right) \ln \left(\frac{v}{v_{\rm ref}} \right) \pi. \end{split}$$

$$\begin{split} v &= (\pi M f)^{1/3} \\ \Psi(f) &= 2\pi f t_c - \phi_c - \pi/4 \\ &+ \frac{3}{128} (\pi M_c f)^{-5/3} \left[1 + \frac{20}{9} \left(\frac{743}{336} + \frac{11}{4} \eta \right) v^2 \right. \\ &- 4(4\pi - \beta) v^3 \\ 10 \left(\frac{3058673}{1016064} + \frac{5429}{1008} \eta + \frac{617}{144} \eta^2 - \sigma \right) v^4 \\ &+ \left(\frac{38645\pi}{252} - \frac{65}{3} \eta \right) \ln v \\ &+ \left(\frac{11583231236531}{4694215680} - \frac{640\pi^2}{3} - \frac{6848\gamma}{21} \right) v^6 \\ &+ \eta \left(\frac{15335597827}{3048192} + \frac{2255\pi^2}{12} + \frac{47324}{63} - \frac{7948}{9} \right) v^6 \\ &+ \left(\frac{76055}{1728} \eta^2 - \frac{127825}{1296} \eta^3 - \frac{6848}{21} \ln 4v \right) v^6 \\ &+ \pi \left(\frac{77096675}{254016} + \frac{378515}{1512} \eta - \frac{74045}{756} \eta^2 \right) v^7 \right] \end{split}$$

....A. Lundgren says?

$$\beta = \frac{\hat{L}}{M^2} \cdot \left[\left(\frac{113}{12} + \frac{25m_2}{4m_1} \right) S_1 + \left(\frac{113}{12} + \frac{25m_1}{4m_2} \right) S_2 \right]$$

$$= \frac{1}{12} \left[(113(m_1/M)^2 + 75\eta) \hat{L} \cdot \hat{a}_1 + (1 \leftrightarrow 2) \right]$$

$$\sigma = \frac{\eta}{48} \left[-247\hat{a}_1 \cdot \hat{a}_2 + 721(\hat{L} \cdot \hat{a}_1)(\hat{L} \cdot \hat{a}_2) \right]$$

Summary

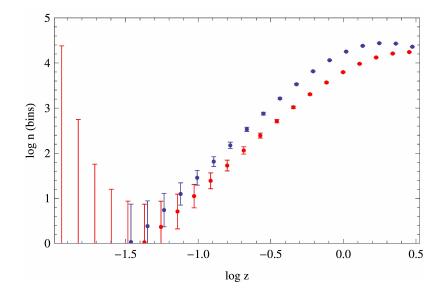
Even in best-known case (bin ev only), large model space to constrain...

Model uncertainty: winds, kicks, NS mass, channels Input uncertainty : dominant metallicity; f_b

...but measured distributions can do it, eventually...

"Infinite" number of DOF

Some features (BH mass peak; spin alignment) particularly helpful


... if we can correct for selection biases

Intrinsic : e.g., aligned easier than nonaligned Implementation : **report** 8d (s_1, s_2, m_1, m_2) efficiency/SNR threshold?

Bonus: Rate versus redshift

Key points:

- <u>Use</u>: High rate (NS-NS, BH-NS) Large lags
- <u>Method(s)</u>: Binned vs predicted ()
 or smoothing; likelihood (like mass); \car{\car{2}}_{...}^2
- How to use?:
 - Input uncertainties (SFR; metallicity)
 +...many models similar up to scale
 - Large source model space, small variations

Conclusion:

High precision measurement of something