
Uintah Framework

Justin Luitjens, Qingyu Meng, John
Schmidt, Martin Berzins, Todd Harman,

Chuch Wight, Steven Parker, et al

Uintah Parallel Computing Framework
• Uintah - far-sighted design by Steve Parker :

– Component based design
• Separated development
• Swap components in and out
• Code reuse

– Automated parallelism
• Engineer only writes “serial” code for a

hexahedral patch
• Complete separation of user code

and parallelism
• Asynchronous communication,

message coalescing
• Hybrid MPI/Threading

– AMR Support
• Automated load balancing & regridding

– Multiple Simulation Components
• ICE, MPM, Arches, MPMICE, et al.

– Simulation of a broad class of fluid-structure interaction
problems

Uintah
Applications

Virtual

Soldier

Angiogenesis

Micropin Flow

Shaped Charges

Sandstone

Compaction

Foam

Compaction

Industrial Flares

Plume Fires

Explosions

How Does Uintah Work?

Task-Graph Specification
•Computes & Requries

Patch-Based Domain
Decomposition

How Does Uintah Work?

Simulation

Controller

Problem

Specification

XML

Simulation
(Arches, ICE, MPM,

MPMICE,
MPMArches, …)

Scheduler

Tasks

Data

Archiver
Tasks

MPILoad

Balancer

Regridder

Callbacks

Callbacks

Checkpoints
Data I/O

Models
(EoS, Constitutive, …)

Domain
Expert

Tuning
Expert

Task Graph Execution

1) Static: Predetermined order
•Tasks are Synchronized
•Higher waiting times

Task

Dependency

Execution Order

Task Graph Execution

Task

Dependency

Execution Order

2) Dynamic: Execute when ready
•Tasks are Asynchronous
•Lower waiting times (up to 25%)

1) Static: Predetermined order
•Tasks are Synchronized
•Higher waiting times

Task Graph Execution

1) Static: Predetermined order
•Tasks are Synchronized
•Higher waiting times

Task

Dependency

Execution Order

2) Dynamic: Execute when ready
•Tasks are Asynchronous
•Lower waiting times (up to 25%)

3) Dynamic Multi-threaded:
•Task-Level Parallelism
•Decreases Communication
•Decreases Load Imbalance

Tiled Regridding Algorithm

FOR each tile

FOR each cell in tile

IF cell has refinement flag

patches.add(tile)

BREAK

END IF

END FOR

END FOR

• Use fixed sized tiles

• Occur at regular intervals

• Can exploit regularity

• Neighbor finding

• Grid Comparisons

Trivial to paralleize
•Computation: O(C/P)
•Communication: None!
•Faster than creating the flags list!

Regridder Comparison
Berger-Rigoutsos
• Global algorithm
• Computation will not weak scale
• Communication will not weak or strong
scale
• O(Patches) All reduces!
• Irregular patches
• Complex implementation

Tiled
• Local Algorthim
• Computation will weak & strong scale
• No communication
• Simple implementation
• Regular patches
• More Patches
• Over-refines

Uintah Load Balancing
• Assign Patches to Processors

– Minimize Load Imbalance
– Minimize Communication
– Run Quickly in Parallel

• Uintah Default: Space-Filling Curves
– O((N log N)/P + (N log^2 P)/P
– Luitjens, J., Berzins, M., and Henderson, T. Parallel space-

filling curve generation through sorting: Research
articles. Concurr. Comput.: Pract. Exper. 19, 10 (2007),
1387–1402.

• Support for Zoltan

In order to assign work evenly we must
know how much work a patch requires

Cost Estimation: Performance Models

Er,t = c1 Gr + c2 Pr + c3

Er,t: Estimated Time Gr: Number of
Grid Cells

Pr: Number of
Particles

c1, c2, c3 : Model Constants

G0 P0 1

… … …

Gn Pn 1

c1

c2

c3

=
Or,t: Observed TimeO0,t

…

On,t

•Need to be proportionally accurate
•Vary with simulation component, sub models, compiler, material,
physical state, etc.

Can estimate constants using least squares at runtime

What if the constants
are not constant?

Cost Estimation: Fading Memory Filter

Er,t: Estimated Time Or,t: Observed Time α: Decay Rate

Er,t+1 = α Or,t + (1 - α) Er,t

• No model necessary
• Can track changing phenomena
• May react to system noise
• Also known as:

• Simple Exponential Smoothing
• Exponential Weighted Average

= α (Or,t - Er,t) + Er,t

Error in last prediction

Compute per patch

Cost Estimation: Kalman Filter, 0th Order

Er,t+1 = Er,t + Kr,t (Or,t - Er,t)

Er,t: Estimated Time Or,t: Observed Time

Kr,t = Mr,t / (Mr,t +σ2)
Update Equation:

Gain:

Mr,t = Pr,t-1 + φa priori cov:

a posteri cov: Pr,t = (1 - Kr,t) Mr,t

• Accounts for uncertainty in the model: φ
• Accounts for uncertainty in the measurement: σ2

• No model necessary
• Can track changing phenomena
• May react to system noise
• Faster convergence than fading memory filter

P0= ∞

Ex. Cont. M. Trans.

Model LS 6.08 7.63

Memory 3.95 3.10

Kalman 3.44 2.01

Cost Estimation Comparison

Exploding Container Material Transport

•Filters provide best estimate
•Filters can spike with system noise

Justin Luitjens and Martin Berzins, Improving the Performance of Uintah: A
Large-Scale Adaptive Meshing Computational Framework, Accepted in IPDPS
2010.

AMR ICE Scalability

AMR MPMICE Scalability

Decent MPMICE
scaling

More work is
needed

One 83 patch
per processor

Problem: Exploding Container

